Page 156 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 156

CHAP. 6]                       PARTIAL DERIVATIVES                              147

                                                   2
                                               2
                                                           3
                                                       3
                     6.83.  Find  (a) dy=dx and  (b) d y=dx if x þ y   3xy ¼ 0.
                                                          2
                                       2
                                          2
                           Ans.  (a) ðy   x Þ=ðy   xÞ;  ðbÞ  2xy=ðy   xÞ 3
                                                                                     2 2
                                                                               3
                                                                                                  2
                                                          @u     @v           v   3xu v þ 4    2xu þ 3y 3
                                     3
                              2
                                             3
                     6.84.  If xu þ v ¼ y ,2yu   xv ¼ 4x, find  (a)  ;  ðbÞ  .  Ans:  ðaÞ  ;  ðbÞ
                                                                                                 2
                                                                                                    2
                                                                                    2
                                                                                  2
                                                          @x     @y             6x uv þ 2y      3x uv þ y
                                                                  @u @x  @v @x
                     6.85.  If u ¼ f ðx; yÞ, v ¼ gðx; yÞ are differentiable, prove that  þ  ¼ 1. Explain clearly which variables
                                                                  @x @u  @x @v
                           are considered independent in each partial derivative.
                                                           @y @r  @y @s
                     6.86.  If f ðx; y; r; sÞ¼ 0, gðx; y; r; sÞ¼ 0, prove that  þ  ¼ 0, explaining which variables are independent.
                                                           @r @x  @s @x
                           What notation could you use to indicate the independent variables considered?
                                                       2
                                              2
                                             d y   F xx F y   2F xy F x F y þ F yy F x 2
                     6.87.  If Fðx; yÞ¼ 0, show that  ¼
                                             dx 2           F y 3
                                                                              2
                                                 2
                                                                                    2
                                                                    3
                                                                2
                     6.88.  Evaluate  @ðF; GÞ  if Fðu; vÞ¼ 3u   uv, Gðu; vÞ¼ 2uv þ v .  Ans.24u v þ 16uv   3v 3
                                  @ðu; vÞ
                                               2
                                    2
                                        3
                                                          2
                     6.89.  If F ¼ x þ 3y   z , G ¼ 2x yz, and H ¼ 2z   xy,evaluate  @ðF; G; HÞ  at ð1;  1; 0Þ.  Ans.  10
                                                                       @ðx; y; zÞ
                                                             ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                    ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                           p
                                                   p
                                                                2
                                                        2
                     6.90.  If u ¼ sin  1  x þ sin  1  y and v ¼ x 1   y þ y 1   x ,determine whether there is a functional relationship
                           between u and v, and if so find it.
                                                     2
                                                  2
                                              2
                     6.91.  If F ¼ xy þ yz þ zx, G ¼ x þ y þ z , and H ¼ x þ y þ z,determine whether there is a functional relation-
                                                                    2
                           ship connecting F, G, and H, and if so find it.  Ans.  H   G   2F ¼ 0.
                     6.92.  (a)If x ¼ f ðu; v; wÞ, y ¼ gðu; v; wÞ, and z ¼ hðu; v; wÞ,prove that  @ðx; y; zÞ @ðu; v; wÞ  ¼ 1provided
                                                                               @ðu; v; wÞ @ðx; y; wÞ
                                 6¼ 0.  (b)Give an interpretation of the result of (a)in terms of transformations.
                           @ðx; y; zÞ
                           @ðu; v; wÞ
                     6.93.  If f ðx; y; zÞ¼ 0 and gðx; y; zÞ¼ 0, show that
                                                         dx     dy     dz
                                                             ¼      ¼
                                                        @ð f ; gÞ  @ð f ; gÞ  @ð f ; gÞ
                                                        @ðy; zÞ  @ðz; xÞ  @ðx; yÞ
                           giving conditions under which the result is valid.
                                                                                2
                                                                       2
                                                               @x     @ x      @ x
                                         2
                                                  2
                                2
                     6.94.  If x þ y ¼ u, y þ z ¼ v, z þ x ¼ w, find  (a)  ;  ðbÞ  ;  ðcÞ  assuming that the equations
                                                               @u     @u 2    @u @v
                           define x; y; and z as twice differentiable functions of u, v; and w.
                                                 2
                                                            2 2
                                                                                 2 2
                                                                      2
                                     1         16x y   8yz   32x z  16y z   8xz   32x y
                           Ans:  ðaÞ     ;  ðbÞ               ;  ðcÞ
                                   1 þ 8xyz               3                    3
                                                  ð1 þ 8xyzÞ           ð1 þ 8xyzÞ
                     6.95.  State and prove a theorem similar to that in Problem 6.35, for the case where u ¼ f ðx; y; zÞ, v ¼ gðx; y; zÞ,
                           w ¼ hðx; y; zÞ.
                     TRANSFORMATIONS, CURVILINEAR COORDINATES
                     6.96.  Given the transformation x ¼ 2u þ v, y ¼ u   3v.(a) Sketch the region r of the uv plane into which the
                                                                                 0
                           region r of the xy plane bounded by x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1is mapped under the transformation.
                           (b) Compute  @ðx; yÞ .  (c) Compare the result of (b)with the ratios of the areas of r and r . 0
                                     @ðu; vÞ
                           Ans.  (b)  7
   151   152   153   154   155   156   157   158   159   160   161