Page 158 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 158

CHAP. 6]                       PARTIAL DERIVATIVES                              149


                                                      @ðx; y; zÞ  @ðx; y; zÞ @ðu; v; wÞ
                                                             ¼
                                                      @ðr; s; tÞ  @ðu; v; wÞ @ðr; s; tÞ
                     6.110. Given the equations F j ðx 1 ; ... ; x m ; y 1 ; .. . ; y n Þ¼ 0 where j ¼ 1; 2; ... ; n.  Prove that under suitable condi-
                           tions on F j ,
                                                                      ,
                                               @y r  @ðF 1 ; F 2 ; ... ; F r ; ... ; F n Þ  @ðF 1 ; F 2 ; .. . ; F n Þ
                                                 ¼
                                               @x s  @ð y 1 ; y 2 ; ... ; x s ; ... ; y n Þ  @ð y 1 ; y 2 ; .. . ; y n Þ
                                                                    2
                                                                                   2
                                                                            2
                                                                   2 @ F    @ F  2 @ F
                     6.111. (a)If Fðx; yÞ is homogeneous of degree 2, prove that x  þ 2xy  þ y  ¼ 2F:
                                                                    @x 2   @x @y   @y 2
                                                               2
                           (b) Illustrate by using the special case Fðx; yÞ¼ x lnðy=xÞ:
                             Note that the result can be written in operator form, using D x   @=@x and D y   @=@y,as
                                       2
                             ðxD x þ yD y Þ F ¼ 2F.[Hint: Differentiate both sides of equation (1), Problem 6.25, twice with respect
                             to  .]
                     6.112. Generalize the result of Problem 6.11 as follows. If Fðx 1 ; x 2 ; ... ; x n Þ is homogeneous of degree p,thenfor
                           any positive integer r,if D xj   @=@x j ,
                                                                 r
                                                                 Þ F ¼ pðp   1Þ ... ðp   r þ 1ÞF
                                            ðx 1 D x 1  þ x 2 D x 2  þ     þ x n D x n
                                                                                    3
                     6.113. (a)Let x and y be determined from u and v according to x þ iy ¼ðu þ ivÞ .  Prove that under this
                           transformation the equation
                                                                                 2
                                                                            2
                                                  2
                                              2
                                             @    @    ¼ 0  is transformed into  @    @    ¼ 0
                                             @x 2  þ  @y 2                 @u 2  þ  @v 2
                           (b)Isthe result in ða) true if x þ iy ¼ Fðu þ ivÞ?Prove your statements.
   153   154   155   156   157   158   159   160   161   162   163