Page 155 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 155

146                            PARTIAL DERIVATIVES                         [CHAP. 6


                                                            2
                                                                           2
                                                                                   2
                                                                                           2
                                                                   2
                                                      2
                               @w   @w   @w         2 @ w  2 @ w  2 @ w   @ w     @ w     @ w
                              x   þ y  þ z  ¼ 0;  ðbÞ x  þ y   þ z   þ 2xy   þ 2xz   þ 2yz    ¼ 0:
                          ðaÞ                          2     2      2
                               @x   @y   @z          @x     @y    @z     @x @y    @x @z   @y @z
                          Indicate possible exceptional points.
                     DIFFERENTIALS
                                3
                                        2
                     6.71.  If z ¼ x   xy þ 3y ,compute (a)  z and (b) dz where x ¼ 5, y ¼ 4,  x ¼ 0:2,  y ¼ 0:1. Explain why
                           z and dz are approximately equal.  (c)Find  z and dz if x ¼ 5, y ¼ 4,  x ¼ 2,  y ¼ 1.
                          Ans.(a)  11:658;  ðbÞ  12:3;  ðcÞ  z ¼ 66; dz ¼ 123
                                  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                   5   2      3
                     6.72.  Computer  ð3:8Þ þ 2ð2:1Þ approximately, using differentials.
                          Ans.2.01
                                                     3
                                                               3
                                                           2
                                                                                      2
                                                                                 2 3
                     6.73.  Find dF and dG if  (a) Fðx; yÞ¼ x y   4xy þ 8y ;  ðbÞ Gðx; y; zÞ¼ 8xy z   3x yz,  (c) Fðx; yÞ¼ xy 2
                          lnðy=xÞ.
                                          2
                                                           2
                                                 3
                                     2
                                   ð3x y   4y Þ dx þðx   8xy þ 24y Þ dy
                          Ans. ðaÞ
                                                          2
                                                      3
                                                                    2 2
                                     2 3
                                                                          2
                                   ð8y z   6xyzÞ dx þð16xyz   3x zÞ dy þð24xy z   3x yÞ dz
                               ðbÞ
                                    2
                                             2
                                   f y lnðy=xÞ  y g dx þf2xy lnðy=xÞþ xyg dy
                               ðcÞ
                                                                                    2
                     6.74.  Prove that  (a) dðUVÞ¼ UdV þ VdU;  ðbÞ dðU=VÞ¼ðVdU   UdVÞ=V ;  ðcÞ dðln UÞ¼ ðdUÞ=U,
                                               2
                          (d) dðtan  1  VÞ¼ ðdVÞ=ð1 þ v Þ where U and V are differentiable functions of two or more variables.
                     6.75.  Determine whether each of the following are exact differentials of a function and if so, find the function.
                                 2
                                                 2
                              ð2xy þ 3y cos 3xÞ dx þð2x y þ sin 3xÞ dy
                          ðaÞ
                                                2
                                            y
                                    2
                              ð6xy   y Þ dx þð2xe   x Þ dy
                          ðbÞ
                                           2
                                                       2
                               3
                              ðz   3yÞ dx þð12y   3xÞ dy þ 3xz dz
                          ðcÞ
                                   2 2
                                                                  2
                                                                      3
                          Ans. ðaÞ x y þ y sin 3x þ c;  ðbÞ not exact,  ðcÞ xz þ 4y   3xy þ c
                     DIFFERENTIATION OF COMPOSITE FUNCTIONS
                                                                              t
                                                                 2
                                                  2
                                          2
                     6.76.  (a)If Uðx; y; zÞ¼ 2x   yz þ xz , x ¼ 2 sin t, y ¼ t   t þ 1, z ¼ 3e , find dU=dt at t ¼ 0.  (b)if
                                                         2
                                                    3
                                            3
                                                            2
                          Hðx; yÞ¼ sinð3x   yÞ, x þ 2y ¼ 2t , x   y ¼ t þ 3t, find dH=dt.
                                                                    !
                                                               2
                                                      2
                                                          2
                                             2
                                          36t y þ 12t þ 9x   6t þ 6x t þ 18
                          Ans:  ðaÞ 24;  ðbÞ                         cosð3x   yÞ
                                                      2
                                                    6x y þ 2
                                                                                                  2
                                                                                                      2
                     6.77.  If Fðx; yÞ¼ ð2x þ yÞ=ðy   2xÞ, x ¼ 2u   3v, y ¼ u þ 2v, find  (a) @F=@u;  ðbÞ @F=@v;  ðcÞ @ F=@u ,
                                  2
                              2
                                         2
                          (d) @ F=@v ;  ðeÞ @ F=@u @v, where u ¼ 2, v ¼ 1.
                          Ans.(a)7,  (b)  14;  ðcÞ 21;  ðdÞ 112;  ðeÞ  49
                                 2
                     6.78.  If U ¼ x Fðy=xÞ,show that under suitable restrictions on F, xð@U=@xÞþ yð@U=@yÞ¼ 2U.
                     6.79.  If x ¼ u cos     v sin   and y ¼ u sin   þ v cos  , where   is a constant, show that
                                                       2       2        2       2
                                                 ð@V=@xÞ þð@V=@yÞ ¼ð@V=@uÞ þð@V=@vÞ
                     6.80.  Show that if x ¼   cos  , y ¼   sin  ,the equations
                                           @u  @v @u   @v             @u  1 @v @v   1 @u
                                                 ;          becomes          ;
                                           @x  ¼  @y @y  ¼  @x        @   ¼    @  @   ¼     @
                     6.81.  Use Problem 6.80 to show that under the transformation x ¼   cos  , y ¼   sin  ,the equation
                                                                                2
                                              2
                                                  2
                                                                    2
                                             @ u  @ u               @ u  1 @u  1 @ u
                                                    ¼ 0   becomes                 ¼ 0
                                                                              2
                                             @x 2  þ  @y 2          @  2  þ    @   þ    @  2
                     IMPLICIT FUNCTIONS AND JACOBIANS
                     6.82.  If Fðx; yÞ¼ 0, prove that dy=dx ¼ F x =F y .
   150   151   152   153   154   155   156   157   158   159   160