Page 152 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 152

CHAP. 6]                       PARTIAL DERIVATIVES                              143


                           which simplifies to
                                                                         2
                                               2
                                                                                            2
                                                                                2
                                     2
                                                                                        2
                                    @ V     2 @ V  2 sin   cos   @V  2 sin   cos   @ V  sin   @V  sin   @ V
                                        ¼ cos
                                     @x 2     @  2  þ    2  @           @  @   þ     @   þ    2  @  2  ð7Þ
                              Similarly,
                                                                                         2
                                                                         2
                                                                                            2
                                                                                2
                                     2
                                    @ V  ¼ sin    2  2 sin   cos   @V  2 sin   cos   @ V  cos   @V  cos   @ V
                                           2 @ V
                                    @y 2      @  2       2  @   þ       @  @   þ     @   þ    2  @  2  ð8Þ
                                                             2
                                                                                   2
                                                                       2
                                                                  2
                                                            @ V  @ V  @ V  1 @V  1 @ V
                              Adding ð7Þ and ð8Þ we find, as required,  þ  ¼  þ  þ    ¼ 0:
                                                                                 2
                                                             @x 2  @y 2  @  2    @     @  2
                     6.43. (a)If x ¼ f ðu; vÞ and y ¼ gðu; vÞ, where u ¼  ðr; sÞ and v ¼  ðr; sÞ, prove that  @ðx; yÞ  ¼
                                                                                                 @ðr; sÞ
                                     .
                           @ðx; yÞ @ðu; vÞ
                           @ðu; vÞ @ðr; sÞ
                           (b) Prove that  @ðx; yÞ @ðu; vÞ  ¼ 1 provided  @ðx; yÞ  6¼ 0, and interpret geometrically.
                                       @ðu; vÞ @ðx; yÞ       @ðu; vÞ

                                        x r  x s        x u u r þ x v v r  x u u s þ x v v s
                               @ðx; yÞ

                           ðaÞ     ¼        ¼

                                      y r  y s  y u u r þ y v v r  y u u s þ y v v s
                               @ðr; sÞ

                                                 x u  x v    u r  u s

                                                            @ðx; yÞ @ðu; vÞ

                                            ¼              ¼

                                               y u  y v  v r  v s  @ðu; vÞ @ðr; sÞ
                              using a theorem on multiplication of determinants (see Problem 6.108).  We have assumed here, of
                              course, the existence of the partial derivatives involved.
                              Place r ¼ x; s ¼ y in the result of ðaÞ:  Then  @ðx; yÞ @ðu; vÞ  @ðx; yÞ  ¼ 1:
                           ðbÞ                                            ¼
                                                                @ðu; vÞ @ðx; yÞ  @ðx; yÞ
                                  The equations x ¼ f ðu; vÞ, y ¼ gðu; vÞ defines a transformation between points ðx; yÞ in the xy plane
                              and points ðu; vÞ in the uv plane. The inverse transformation is given by u ¼  ðx; yÞ, v ¼  ðx; yÞ. The
                              result obtained states that the Jacobians of these transformations are reciprocals of each other.
                     6.44. Show   that  Fðxy; z   2xÞ¼ 0  satisfies  under  suitable  conditions  the  equation
                           xð@z=@xÞ  yð@z=@yÞ¼ 2x.What are these conditions?
                              Let u ¼ xy, v ¼ z   2x.  Then Fðu; vÞ¼ 0 and
                                             dF ¼ F u du þ F v dv ¼ F u ðxdy þ ydxÞþ F v ðdz   2 dxÞ¼ 0
                           ð1Þ
                              Taking z as dependent variable and x and y as independent variables, we have dz ¼ z x dx þ z y dy. Then
                           substituting in (1), we find
                                                  ð yF u þ F v z x   2Þ dx þðxF u þ F v z y Þ dy ¼ 0
                           Hence, we have, since x and y are independent,
                                                   yF u þ F v z x   2 ¼ 0  xF u þ F v z y ¼ 0
                                                ð2Þ                 ð3Þ
                           Solve for F u in (3) and substitute in (2). Then we obtain the required result xz x   yz y ¼ 2x upon dividing by
                           F v (supposed not equal to zero).
                              The result will certainly be valid if we assume that Fðu; vÞ is continuously differentiable and that F v 6¼ 0.
   147   148   149   150   151   152   153   154   155   156   157