Page 147 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 147

138                            PARTIAL DERIVATIVES                         [CHAP. 6



                              Differentiating (2)with respect to x and using (1), we have
                                                                         2
                                                                                    2
                                          2
                                          @ z     1      @z      1   6z½z=ð3z   xފ  3z þ x
                                                       6z
                                         @x @y  ¼  2  2  @x    1 ¼    2   2   ¼     2   3
                                               ð3z   xÞ             ð3z   xÞ      ð3z   xÞ
                              The result can also be obtained by differentiating (1)with respect to y and using (2).
                     6.35. Let u ¼ f ðx; yÞ and v ¼ gðx; yÞ, where f and g are continuously differentiable in some region r.
                          Prove that a necessary and sufficient condition that there exists a functional relation between u
                          and v of the form  ðu; vÞ¼ 0is the vanishing of the Jacobian, i.e.,  @ðu; vÞ  ¼ 0 identically.
                                                                                 @ðx; yÞ
                          Necessity.  We have to prove that if the functional relation  ðu; vÞ¼ 0exists, then the Jacobian  @ðu; vÞ  ¼ 0
                          identically.  To do this, we note that                                @ðx; yÞ

                                            d  ¼   u du þ   v dv ¼   u ðu x dx þ u y dyÞþ   v ðv x dx þ v y dyÞ
                                               ¼ð  u u x þ   v v x Þ dx þð  u u y þ   v v y Þ dy ¼ 0

                          Then                 ð1Þ    u u x þ   v v x ¼ 0  ð2Þ    u u y þ   v v y ¼ 0
                              Now   u and   v cannot be identically zero since if they were, there would be no functional relation,

                                                                            u x     @ðu; vÞ
                          contrary to hypothesis.  Hence it follows from (1) and (2)that     v x    ¼ 0identically.
                                                                                  ¼
                                                                          u y  v y
                                                                                 @ðx; yÞ
                          Sufficiency.  We have to prove that if the Jacobian  @ðu; vÞ  ¼ 0identically, then there exists a functional
                                                                 @ðx; yÞ
                          relation between u and v, i.e.,  ðu; vÞ¼ 0.
                              Let us first suppose that both u x ¼ 0 and u y ¼ 0. In this case the Jacobian is identically zero and u is a
                          constant c 1 ,sothat the trival functional relation u ¼ c 1 is obtained.
                              Let us now assume that we do not have both u x ¼ 0 and u y ¼ 0; for definiteness, assume u x 6¼ 0. We
                          may then, according to Theorem 1, Page 124, solve for x in the equation u ¼ f ðx; yÞ to obtain x ¼ Fðu; yÞ,
                          from which it follows that
                                                ð1Þ  u ¼ f fFðu; yÞ; yg  ð2Þ  v ¼ gfFðu; yÞ; yg
                              From these we have respectively,
                              du ¼ u x dx þ u y dy ¼ u x ðF u du þ F y dyÞþ u y dy ¼ u x F u du þðu x F y þ u y Þ dy
                          ð3Þ
                              dv ¼ v x dx þ v y dy ¼ v x ðF u du þ F y dyÞþ v y dy ¼ v x F u du þðv x F y þ v y Þ dy
                          ð4Þ
                              From (3), u x F u ¼ 1 and u x F y þ u y ¼ 0or (5) F y ¼ u y =u x .  Using this, (4)becomes

                                                                             u x v y   u y v x
                                                                                       dy:
                          ð6Þ            dv ¼ v x F u du þfv x ð u y =u x Þþ v y g dy ¼ v x F u du þ
                                                                                u x

                                                     u x
                                            @ðu; vÞ
                              But by hypothesis       u y    ¼ u x v y   u y v x ¼ 0identically, so that (6)becomes dv ¼ v x F u du.
                                                 ¼
                                                   v x  v y

                                            @ðx; yÞ
                          This means essentially that referring to (2), @v=@y ¼ 0 which means that v is not dependent on y but depends
                          only on u, i.e., v is a function of u, which is the same as saying that the functional relation  ðu; vÞ¼ 0exists.
                                   x þ y           1       1      @ðu; vÞ
                                         and v ¼ tan  x þ tan  y, find  .
                                   1   xy                         @ðx; yÞ
                     6.36. (a)If u ¼
                          (b) Are u and v functionally related? If so, find the relationship.
   142   143   144   145   146   147   148   149   150   151   152