Page 146 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 146

CHAP. 6]                       PARTIAL DERIVATIVES                              137


                                                                        3   1

                                                  @ðF; GÞ   F x  F v

                                             @u               G x  G v         1   4v     1   12v
                                                  @ðx; vÞ
                                                       ¼           ¼           ¼
                                             @x   @ðF; GÞ     F u        2u   1    1   8uv
                                               ¼
                                                               F v
                                                                         1   4v
                                                  @ðu; vÞ   G u  G v
                           provided 1   8uv 6¼ 0.  Similarly, the other partial derivatives are obtained.
                     6.33. If Fðu; v; w; x; yÞ¼ 0, Gðu; v; w; x; yÞ¼ 0, Hðu; v; w; x; yÞ¼ 0, find

                               @v        @x        @w
                                    ;         ;         :
                               @y    x   @v    w   @u    y
                           ðaÞ       ðbÞ       ðcÞ
                              From 3 equations in 5 variables, we can (theoretically at least) determine 3 variables in terms of the
                           remaining 2. Thus, 3 variables are dependent and 2 are independent. If we were asked to determine @v=@y,
                           we would know that v is a dependent variable and y is an independent variable, but would not know the

                                                                            @v
                           remaining independent variable.  However, the particular notation     serves to indicate that we are to
                                                                            @y    x
                           obtain @v=@y keeping x constant, i.e., x is the other independent variable.
                           (a)Differentiating the given equations with respect to y,keeping x constant, gives
                                         F u u y þ F v v y þ F w w y þ F y ¼ 0  G u u y þ G v v y þ G w w y þ G y ¼ 0
                                      ð1Þ                         ð2Þ
                                                       H u u y þ H v v y þ H w w y þ H y ¼ 0
                                                    ð3Þ
                              Solving simultaneously for v y ,we have

                                                              F u  F y  F w

                                                              G u  G y     @ðF; G; HÞ
                                                                   G w


                                                    @v      H u  H y  H w
                                                                           @ðu; y; wÞ

                                                    @y
                                                 v y ¼  ¼               ¼
                                                       x      F u  F v  F w    @ðF; G; HÞ
                                                            G u  G v

                                                                           @ðu; v; wÞ
                                                                   G w


                                                            H u  H v  H w
                              Equations (1), (2), and (3)can also be obtained by using differentials as in Problem 6.31.
                                  The Jacobian method is very suggestive for writing results immediately, as seen in this problem and

                                                                  @v
                              Problem 6.31. Thus, observe that in calculating     the result is the negative of the quotient of two
                                                                  @y    x
                              Jacobians, the numerator containing the independent variable y,the denominator containing the
                              dependent variable v in the same relative positions.  Using this scheme, we have
                                                        @ðF; G; HÞ           @ðF; G; HÞ

                                                 @x                    @w
                                                         @ðv; y; uÞ           @ðu; x; vÞ

                                             ðbÞ     ¼             ðcÞ    ¼
                                                 @v    w  @ðF; G; HÞ   @u    y  @ðF; G; HÞ
                                                         @ðx; y; uÞ           @ðw; x; vÞ
                                                              2
                                                     2
                                                    @ z     3z þ x
                             3
                     6.34. If z   xz   y ¼ 0, prove that  ¼        .
                                                   @x @y     2    3
                                                           ð3z   xÞ
                              Differentiating with respect to x,keeping y constant and remembering that z is the dependent variable
                           depending on the independent variables x and y,we find
                                                2 @z  @z                   @z    z
                                              3z     x    z ¼ 0  and   ð1Þ   ¼
                                                                                2
                                                 @x   @x                   @x  3z   x
                              Differentiating with respect to y,keeping x constant, we find
                                                2 @z  @z                   @z    1
                                               3z    x    1 ¼ 0  and   ð2Þ   ¼
                                                                                2
                                                 @y   @y                   @y  3z   x
   141   142   143   144   145   146   147   148   149   150   151