Page 151 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 151

142                            PARTIAL DERIVATIVES                         [CHAP. 6



                              Then
                                                          0
                              f xx ð0; 0Þ¼ lim  f x ðh; 0Þ  f x ð0; 0Þ  ¼ lim  ¼ 0
                          ðcÞ
                                      h!0     h        h!0 h
                                                          0
                                         f y ð0; kÞ  f y ð0; 0Þ
                              f yy ð0; 0Þ¼ lim       ¼ lim  ¼ 0
                          ðdÞ
                                      k!0     k        k!0 k
                                                           k
                              f xy ð0; 0Þ¼ lim  f x ð0; kÞ  f x ð0; 0Þ  ¼ lim  ¼ 1
                          ðeÞ
                                      k!0     k        k!0 k
                                                          h
                              f yx ð0; 0Þ¼ lim  f y ðh; 0Þ  f y ð0; 0Þ  ¼ lim  ¼ 1
                          ð f Þ
                                      h!0     h        h!0 h
                              Note that f xy 6¼ f yx at ð0; 0Þ.  See Problem 6.13.
                                                                                          2
                                                                                     2
                                                                                    @ V   @ V
                     6.42. Show that under the transformation x ¼   cos  , y ¼   sin   the equation  þ  ¼ 0 becomes
                           2             2                                           @x 2  @y 2
                          @ V   1 @V  1 @ V
                                            ¼ 0.
                                       2
                           @  2    @     @  2
                                    þ
                              þ
                              We have
                                                @V  @V @   @V @        @V  @V @   @V @
                                            ð1Þ    ¼     þ         ð2Þ   ¼      þ
                                                @x   @  @x  @  @x      @y  @  @y  @  @y
                              Differentiate x ¼   cos  , y ¼   sin   with respect to x, remembering that   and   are functions of x
                          and y
                                                      @       @             @       @
                                            1 ¼   sin    þ cos    ;  0 ¼   cos    þ sin
                                                      @x      @x            @x      @x
                          Solving simultaneously,
                                                       @          @     sin
                                                         ¼ cos  ;   ¼                                ð3Þ
                                                       @x         @x
                              Similarly, differentiate with respect to y.  Then
                                                      @       @             @      @
                                             0 ¼   sin    þ cos    ;  1 ¼   cos    þ sin
                                                      @y      @y            @y     @y
                          Solving simultaneously,
                                                        @          @   cos
                                                          ¼ sin  ;
                                                        @y         @y  ¼                             ð4Þ
                              Then from (1) and (2),
                                             @V      @V  sin   @V      @V     @V   cos   @V
                                               ¼ cos                     ¼ sin
                                             @x      @       @         @y      @       @
                                         ð5Þ                       ð6Þ           þ
                          Hence
                                         2


                                        @ V   @    @V     @    @V @   @    @V @
                                        @x 2  ¼  @x @x  ¼  @  @x @x  þ @  @x @x
                                              @     @V  sin   @V @   @     @V  sin   @V @


                                                cos                   cos
                                             @      @       @  @x  @      @       @  @x
                                           ¼                     þ
                                                                      !
                                                                    2
                                                   2
                                                  @ V  sin   @V  sin   @ V
                                           ¼ cos     þ                 ðcos  Þ
                                                  @  2    2  @      @  @
                                                                                 !
                                                              2
                                                                               2
                                                     @V      @ V   cos   @V  sin   @ V     sin
                                             þ  sin    þ cos
                                                     @       @  @      @       @  2
   146   147   148   149   150   151   152   153   154   155   156