Page 148 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 148

CHAP. 6]                       PARTIAL DERIVATIVES                              139

                                                   2
                                                 1 þ y  1 þ x 2


                                                    2       2

                                      u x
                               @ðu; vÞ   u y    ð1   xyÞ  ð1   xyÞ

                                                                ¼ 0  if xy 6¼ 1:
                           ðaÞ     ¼         ¼

                               @ðx; yÞ     v x  v y     1  1


                                                 1 þ x 2  1 þ y 2
                           (b)ByProblem 6.35, since the Jacobian is identically zero in a region, there must be a functional relation-
                              ship between u and v.  This is seen to be tan v ¼ u, i.e.,  ðu; vÞ¼ u   tan v ¼ 0.  We can show this
                              directly by solving for x (say) in one of the equations and then substituting in the other.  Thus, for
                              example, from v ¼ tan  1  x þ tan  1  y we find tan  1  x ¼ v   tan  1  y and so
                                            x ¼ tanðv   tan  1  yÞ¼  tan v   tanðtan  1  yÞ  ¼  tan v   y
                                                             1 þ tan v tanðtan  1  yÞ  1 þ y tan v
                              Then substituting this in u ¼ðx þ yÞ=ð1   xyÞ and simplifying, we find u ¼ tan v.
                                                     2
                                                 2
                                                                   3
                                                         2
                     6.37. (a)If x ¼ u   v þ w, y ¼ u   v   w and z ¼ u þ v, evaluate the Jacobian  @ðx; y; zÞ  and
                           (b) explain the significance of the non-vanishing of this Jacobian.  @ðu; v; wÞ

                                        x u  x v              1
                                                      1   1
                                              x w
                                                                     2
                                                                             2



                              @ðx; y; zÞ      y w   ¼ 2u   2v   2w   ¼ 6wu þ 2u þ 6u v þ 2w
                                     ¼ y u  y v
                           ðaÞ

                              @ðu; v; wÞ             2
                                        z u  z v  z w
                                                      3u  1   0
                           (b) The given equations can be solved simultaneously for u; v; w in terms of x; y; z in a region r if the
                              Jacobian is not zero in r.
                     TRANSFORMATIONS, CURVILINEAR COORDINATES
                     6.38. A region r in the xy plane is bounded by x þ y ¼ 6, x   y ¼ 2; and y ¼ 0. (a) Determine the
                           region r in the uv plane into which r is mapped under the transformation x ¼ u þ v, y ¼ u   v.
                                  0
                           (b) Compute  @ðx; yÞ .(c) Compare the result of (b) with the ratio of the areas of r and r .
                                                                                                     0
                                      @ðu; vÞ
                           (a) The region r shown shaded in Fig. 6-9(a)below is a triangle bounded by the lines x þ y ¼ 6, x   y ¼ 2,
                              and y ¼ 0 which for distinguishing purposes are shown dotted, dashed, and heavy respectively.












                                                                Fig. 6-9
                                  Under the given transformation the line x þ y ¼ 6istransformed into ðu þ vÞþðu   vÞ¼ 6, i.e.,
                              2u ¼ 6or u ¼ 3, which is a line (shown dotted) in the uv plane of Fig. 6-9(b) above.
   143   144   145   146   147   148   149   150   151   152   153