Page 143 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 143

134                            PARTIAL DERIVATIVES                         [CHAP. 6


                                              @z  @z @u             @z  @z @u      2
                                                      ¼ f ðuÞ  2xy;         ¼ f ðuÞ  x
                                                         0
                                                                              0
                                              @x  ¼  @u @x          @y  ¼  @u @y
                                    @z         2      @z        2         @z    @z
                              Then  x  ¼ f ðuÞ  2x y;  2y  ¼ f ðuÞ  2x y and so x  ¼ 2y  :
                                         0
                                                           0
                                    @x                @y                  @x    @y
                          Another method:
                                                2
                                                            2
                                                                      2
                                                     2
                              We have    dz ¼ f ðx yÞ dðx yÞ¼ f ðx yÞð2xy dx þ x dyÞ:
                                              0
                                                          0
                                             @z    @z
                              Also,      dz ¼  dx þ  dy:
                                             @x    @y
                                         @z        2     @z   3   2
                              Then         ¼ 2xy f ðx yÞ;  ¼ x f ðx yÞ.
                                                                0
                                                 0
                                         @x              @y
                                            2
                              Elimination of f ðx yÞ yields  x  @z  ¼ 2y  @z .
                                          0
                                                       @x    @y
                                                                                        p
                     6.25. If for all values of the parameter   and for some constant p, Fð x; yÞ¼   Fðx; yÞ identically,
                          where F is assumed differentiable, prove that xð@F=@xÞþ yð@F=@yÞ¼ pF.
                              Let  x ¼ u,  y ¼ v.  Then
                                                                  p
                                                          Fðu; vÞ¼   Fðx; yÞ                         ð1Þ
                              The derivative with respect to   of the left side of (1)is
                                                    @F   @F @u  @F dv  @F  @F
                                                                            y
                                                     @   ¼  @u @   þ  @v @   ¼  @u  x þ  @v
                              The derivative with respect to   of the right side of (1)is p  p 1 F.  Then
                                                          @F   @F    p 1
                                                         x   þ y  ¼ p   F                            ð2Þ
                                                           @u   @v
                              Letting   ¼ 1in(2), so that u ¼ x; v ¼ y,we have xð@F=@xÞþ yð@F=@yÞ¼ pF.
                                     4 2
                     6.26. If Fðx; yÞ¼ x y sin  1  y=x, show that xð@F=@xÞþ yð@F=@yÞ¼ 6F.
                                                  2
                                                              6 4 2
                                                                            6
                                              4
                              Since Fð x; yÞ¼ ð xÞ ð yÞ sin  1  y= x ¼   x y sin  1 y=x ¼   Fðx; yÞ,the result follows from Pro-
                          blem 6.25 with p ¼ 6.  It can of course also be shown by direct differentiation.
                                                                          2
                                                                               2
                                                                2
                                                                        2
                                                                    2
                     6.27. Prove that Y ¼ f ðx þ atÞþ gðx   atÞ satisfies @ Y=@t ¼ a ð@ Y=@x Þ, where f and g are assumed
                          to be at least twice differentiable and a is any constant.
                              Let u ¼ x þ at; v ¼ x   at so that Y ¼ f ðuÞþ gðvÞ.  Then if f ðuÞ  df =du, g ðvÞ  dg=dv,
                                                                           0
                                                                                     0
                                    @Y  @Y @u  @Y @v                @Y  @Y @u  @Y @v
                                                   ¼ af ðuÞ  ag ðvÞ;  ¼      þ     ¼ f ðuÞþ g ðvÞ
                                                             0
                                                                                      0
                                                                                           0
                                                       0
                                             þ
                                       ¼
                                    @t   @u @t  @v @t               @x  @x @x  @v @x
                                                                      2
                                                                          2
                                                                                  2
                                                                                      2
                              By further differentiation, using the notation f ðuÞ  d f =du , g ðvÞ  d g=dv ,we have
                                                                00
                                                                             00
                               2
                              @ Y  @Y t  @Y t @u  @Y t @v  @            @
                                                          0     0           0     0
                               @t   @t  @u @t  @v @t  @u               @v
                          ð1Þ   2  ¼  ¼      þ      ¼  faf ðuÞ  ag ðvÞgðaÞþ  faf ðuÞ  ag ðvÞg ð aÞ
                                                      2  00   2  00
                                                    ¼ a f ðuÞþ a g ðvÞ
                               2
                              @ Y  @Y x  @Y x @u  @Y x @v  @         @
                                                          0     0       0     0
                          ð2Þ   2  ¼   ¼      þ      ¼  f f ðuÞþ g ðvÞg þ  f f ðuÞþ g ÞðvÞg
                               @x   @x   @u @x  @v @x  @u           @v
                                                       00    00
                                                     ¼ f ðuÞþ g ðvÞ
                                                    2
                                                2
                                                          2
                                                        2
                                                              2
                              Then from (1) and (2), @ Y=@t ¼ a ð@ Y=@x Þ.
   138   139   140   141   142   143   144   145   146   147   148