Page 144 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 144

CHAP. 6]                       PARTIAL DERIVATIVES                              135
                                                       2
                                                      @ U
                     6.28. If x ¼ 2r   s and y ¼ r þ 2s, find  in terms of derivatives with respect to r and s.
                                                      @y @x
                              Solving x ¼ 2r   s, y ¼ r þ 2s for r and s: r ¼ð2x þ yÞ=5, s ¼ð2y   xÞ=5.
                              Then @r=@x ¼ 2=5, @s=@x ¼ 1=5, @r=@y ¼ 1=5, @s=@y ¼ 2=5.  Hence we have
                                                    @U  @U @r  @U @s  2 @U  1 @U
                                                    @x  ¼  @r @x  þ  @s @x  ¼  5 @r     5 @s
                                           2

                                          @ U   @    @U     @    2 @U  1 @U @r  @    2 @U  1 @U @s

                                          @y @x  ¼  @y @x  ¼  @r 5 @r     5 @s  @y  þ  @s 5 @r     5 @s  @y
                                                            !                 !
                                                         2
                                                   2
                                                                     2
                                                                            2
                                                 2 @ U  1 @ U      2 @ U  1 @ U
                                                              1
                                                                                2
                                              ¼     2           þ            2
                                                 5 @r  5 @r @s  5  5 @s @r  5 @s  5
                                                                   !
                                                     2
                                                                 2
                                                           2
                                                1   @ U   @ U   @ U
                                                   2   þ 3     2
                                                25  @r    @r @s  @s
                                              ¼       2           2
                           assuming U has continuous second partial derivatives.
                     IMPLICIT FUNCTIONS AND JACOBIANS
                                  3                  5             2   3  2
                     6.29. If U ¼ x y, find dU=dt if  (1) x þ y ¼ t;  ð2) x þ y ¼ t .
                              Equations (1) and (2)define x and y as (implicit) functions of t. Then differentiating with respect to t,
                           we have
                                                                               2
                                               4
                                              5x ðdx=dtÞþ dy=t ¼ 1  2xðdx=dtÞþ 3y ðdy=dtÞ¼ 2t
                                          ð3Þ                    ð4Þ
                              Solving (3) and (4) simultaneously for dx=dt and dy=dt,
                                                                           4
                                                1  1                       5x  1
                                                         2                           4
                                        dx      2t  3y  2    3y   2t  dy     2x  2t     10x t   2x
                                                                                    4 2
                                        dt  ¼     5x 4  1    ¼  15x y   2x  ;  dt  ¼     5x 4  1    ¼  15x y   2x
                                                         4 2



                                               2x  3y 2                   2x  3y 2
                                                                          4
                                                          2
                                dU   @U dx  @U dy        3y   2t  !    10x t   2x  !
                                                    2
                                                                     3
                           Then    ¼      þ     ¼ð3x yÞ          þðx Þ           :
                                                          4 2
                                                                          4 2
                                 dt  @x dt  @y dt      15x y   2x      15x y   2x
                     6.30. If Fðx; y; zÞ¼ 0 defines z as an implicit function of x and y in a region r of the xy plane, prove
                           that  (a) @z=@x ¼ F x =F z and  (b) @z=@y ¼ F y =F z , where F z 6¼ 0.
                                                             @z    @z
                              Since z is a function of x and y,      dy.
                                                         dz ¼
                                                             @x  dx þ  @y
                                         @F     @F    @F      @F  @F @z      @F  @F @z
                              Then                                                   dy ¼ 0.
                                          @x  dx þ  @y  dy þ  @z  dz ¼  @x  þ  @z @x  dx þ  @y  þ  @z @y
                                     dF ¼
                              Since x and y are independent, we have
                                                    @F  @F @z          @F  @F @z
                                                             ¼ 0               ¼ 0
                                                    @x  @z @x          @y  @z @y
                                                ð1Þ    þ           ð2Þ   þ
                           from which the required results are obtained.  If desired, equations (1) and (2)can be written directly.
                     6.31. If Fðx; y; u; vÞ¼ 0 and Gðx; y; u; vÞ¼ 0, find  (a) @u=@x;  ðbÞ @u=@y;  ðcÞ @v=@x;  ðdÞ @v=@y.
                              The two equations in general define the dependent variables u and v as (implicit) functions of the
                           independent variables x and y.  Using the subscript notation, we have
   139   140   141   142   143   144   145   146   147   148   149