Page 20 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 20

CHAP. 1]                             NUMBERS                                     11


                                                   1  1  1       1
                              Let               S n ¼  þ þ þ     þ
                                                   2  4  8      2 n 1
                                              1       1  1       1   1
                              Then
                                              2  S n ¼  4  þ þ     þ 2 n 1  þ  2 n
                                                         8
                                              1    1   1                1
                              Subtracting,      S n ¼     :  Thus S n ¼ 1    < 1for all n:
                                              2    2  2 n              2 n 1

                     EXPONENTS, ROOTS, AND LOGARITHMS
                     1.15. Evaluate each of the following:
                               4
                               3   3 8  3 4þ8  4þ8 14   2  1  1
                           ðaÞ  14  ¼  14  ¼ 3  ¼ 3  ¼  2  ¼
                                3    3                3   9
                              s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                     6    2    5   4 10  6    10 2  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                ð5   10 Þð4   10 Þ            2:5   10  9  25   10  10  ¼ 5   10  5  or 0:00005
                                   8   10       8    10
                           ðbÞ         5    ¼          5  ¼          ¼
                                                         3 3
                                                             2  3
                                                 2 x
                                   27
                                                     27
                              log    ¼ x:   Then                 or x ¼ 3
                           ðcÞ   2=3 8           3  ¼  8  ¼  2  ¼  3
                           ðdÞðlog bÞðlog aÞ¼ u:  Then log b ¼ x; log a ¼ y assuming a; b > 0 and a; b 6¼ 1:
                                                               b
                                 a
                                                       a
                                      b
                                   x
                                         y
                              Then a ¼ b, b ¼ a and u ¼ xy.
                                    x y
                                                             1
                                             y
                              Since ða Þ ¼ a xy  ¼ b ¼ a we have a xy  ¼ a or xy ¼ 1the required value.
                                                                       M
                     1.16. If M > 0, N > 0; and a > 0 but a 6¼ 1, prove that log a  ¼ log M   log N.
                                                                              a
                                                                                     a
                                                                       N
                                                                y
                                                         x
                              Let log M ¼ x,log N ¼ y.  Then a ¼ M, a ¼ N and so
                                   a
                                            a
                                           M   a x                M
                                                 ¼ a x y  or  log   ¼ x   y ¼ log M   log N
                                           N  ¼  a y             a  N         a      a
                     COUNTABILITY
                     1.17. Prove that the set of all rational numbers between 0 and 1 inclusive is countable.
                                                                                              1 2 3
                              Write all fractions with denominator 2, then 3; .. . considering equivalent fractions such as ; ; ; .. . no
                                                                                              2 4 6
                           more than once. Then the 1-1 correspondence with the natural numbers can be accomplished as follows:
                                            Rational numbers  0  1  1 2  1 3  2 3  1 4  3 4  1 5  2 5  .. .
                                                            l  lll     lll     ll
                                            Natural numbers  1  2  3  4  5  6  7  8  9  .. .
                              Thus the set of all rational numbers between 0 and 1 inclusive is countable and has cardinal number F o
                           (see Page 5).
                     1.18. If A and B are two countable sets, prove that the set consisting of all elements from A or B (or
                           both) is also countable.
                              Since A is countable, there is a 1-1 correspondence between elements of A and the natural numbers so
                           that we can denote these elements by a 1 ; a 2 ; a 3 ; ... .
                              Similarly, we can denote the elements of B by b 1 ; b 2 ; b 3 ; ... .
                           Case 1: Suppose elements of A are all distinct from elements of B. Then the set consisting of elements from
                           A or B is countable, since we can establish the following 1-1 correspondence.
   15   16   17   18   19   20   21   22   23   24   25