Page 24 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 24

CHAP. 1]                             NUMBERS                                     15

                                             ffiffiffi
                                            p  10            1=3
                     1.28. Evaluate  (a) ð 1 þ  3iÞ ,(b) ð 1 þ iÞ  .
                           (a)By Problem 1.27(b) and De Moivre’s theorem,
                                           10                  10   10
                                       p ffiffiffi
                                   ð 1 þ  3iÞ  ¼½2ðcos 2 =3 þ i sin 2 =3ފ  ¼ 2 ðcos 20 =3 þ i sin 20 =3Þ
                                            ¼ 1024½cosð2 =3 þ 6 Þþ i sinð2 =3 þ 6 ފ ¼ 1024ðcos 2 =3 þ i sin 2 =3Þ
                                                    1  1
                                                       p ffiffiffi         p ffiffiffi
                                                    2
                                            ¼ 1024   þ 2  3i ¼ 512 þ 512 3i
                                     p ffiffiffi               p ffiffiffi
                                                          2½cosð1358 þ k   3608Þþ i sinð1358 þ k   3608ފ.  Then
                           (b)  1 þ i ¼  2ðcos 1358 þ i sin 1358Þ¼
                                                  1358 þ k   3608  1358 þ k   3608

                                          ffiffiffi
                                         p
                                    1=3    1=3
                                                      3                 3                          P 1
                              ð 1 þ iÞ  ¼ð 2Þ  cos           þ i sin
                              The results for k ¼ 0; 1; 2are
                                                                                       165
                                                                               P 2
                                              6
                                              p ffiffiffi
                                               2ðcos 458 þ i sin 458Þ;                       45
                                               ffiffiffi
                                               2ðcos 1658 þ i sin 1658Þ;
                                              p
                                              6                                                 6
                                                                                   285         √2
                                              6
                                              p ffiffiffi
                                               2ðcos 2858 þ i sin 2858Þ
                              The results for k ¼ 3; 4; 5; 6; 7; .. . give repetitions of these.  These
                              complex roots are represented geometrically in the complex plane
                              by points P 1 ; P 2 ; P 3 on the circle of Fig. 1-5.            P 3
                                                                                        Fig. 1-5
                     MATHEMATICAL INDUCTION
                                     2   2  3   2        2  1
                     1.29. Prove that 1 þ 2 þ 3 þ 4 þ     þ n ¼ nðn þ 1Þð2n þ 1Þ.
                                                            6
                                                             1
                                                          2
                              The statement is true for n ¼ 1 since 1 ¼ ð1Þð1 þ 1Þð2   1 þ 1Þ¼ 1.
                                                             6
                              Assume the statement true for n ¼ k.  Then
                                                   2  2   2      2  1
                                                                    6
                                                  1 þ 2 þ 3 þ     þ k ¼ kðk þ 1Þð2k þ 1Þ
                                         2
                              Adding ðk þ 1Þ to both sides,
                                2   2  2       2       2  1                  2       1
                                                         6                           6
                                1 þ 2 þ 3 þ     þ k þðk þ 1Þ ¼ kðk þ 1Þð2k þ 1Þþ ðk þ 1Þ ¼ðk þ 1Þ½ kð2k þ 1Þþ k þ 1Š
                                                         1       2          1
                                                                            6
                                                         6
                                                        ¼ ðk þ 1Þð2k þ 7k þ 6Þ¼ ðk þ 1Þðk þ 2Þð2k þ 3Þ
                           which shows that the statement is true for n ¼ k þ 1 if it is true for n ¼ k. But since it is true for n ¼ 1, it
                           follows that it is true for n ¼ 1 þ 1 ¼ 2 and for n ¼ 2 þ 1 ¼ 3; .. . ; i.e., it is true for all positive integers n.
                                         n
                                     n
                     1.30. Prove that x   y has x   y as a factor for all positive integers n.
                                                          1
                                                             1
                              The statement is true for n ¼ 1 since x   y ¼ x   y.
                                                                      k
                                                                          k
                              Assume the statement true for n ¼ k, i.e., assume that x   y has x   y as a factor.  Consider
                                                                    k
                                                                        k
                                                   x kþ1    y kþ1  ¼ x kþ1    x y þ x y   y kþ1
                                                               k         k  k
                                                            ¼ x ðx   yÞþ yðx   y Þ
                           The first term on the right has x   y as a factor, and the second term on the right also has x   y as a factor
                           because of the above assumption.
                                                                k
                                                             k
                              Thus x kþ1    y kþ1  has x   y as a factor if x   y does.
                                                                                             3
                                       1
                                                                                         3
                                                                        2
                                                                    2
                                          1
                              Then since x   y has x   y as factor, it follows that x   y has x   y as a factor, x   y has x   y as a
                           factor, etc.
   19   20   21   22   23   24   25   26   27   28   29