Page 27 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 27

18                                   NUMBERS                               [CHAP. 1



                     1.39.  Show that a fraction with denominator 17 and with numerator 1; 2; 3; .. . ; 16 has 16 digits in the repeating
                           portion of its decimal expansion. Is there any relation between the orders of the digits in these expansions?
                                       p ffiffiffi  p ffiffiffi
                     1.40.  Prove that  (a)  3,  (b)  3  2 are irrational numbers.
                                       p ffiffiffi  p ffiffiffi  p  ffiffiffi  p ffiffiffi  p ffiffiffi
                     1.41.  Prove that  (a)  3  5    4  3,  (b)  2 þ  3 þ  5 are irrational numbers.
                     1.42.  Determine a positive rational number whose square differs from 7 by less than .000001.

                     1.43.  Prove that every rational number can be expressed as a repeating decimal.

                     1.44.  Find the values of x for which
                                                          2
                                                      3
                               3
                                    2
                                                                           4
                                                                                2
                           (a)2x   5x   9x þ 18 ¼ 0,  (b)3x þ 4x   35x þ 8 ¼ 0,  (c) x   21x þ 4 ¼ 0.
                                                     p ffiffiffi      p ffiffiffiffiffi   p ffiffiffiffiffi
                           Ans.                        5 (c)  1     1
                                                            2  ð5    17Þ; ð 5    17Þ
                                                                    2
                               (a)3;  2; 3=2(b)8=3;  2
                                                                                        ffiffiffiffi
                                                                                      p
                                                                              p
                                                                               ffiffiffiffi
                     1.45.  If a, b, c, d are rational and m is not a perfect square, prove that a þ b m ¼ c þ d m if and only if a ¼ c
                           and b ¼ d.
                                      p ffiffiffi  p ffiffiffi  p ffiffiffi  p ffiffiffiffiffi  p ffiffiffi
                                           5  12 5   2 15 þ 14 3   7
                     1.46.  Prove that  1 þ  p 3 þ  p ffiffiffi ¼      :
                                       ffiffiffi
                                           5           11
                                   1    3 þ
                     INEQUALITIES
                     1.47.  Find the set of values of x for which each of the following inequalities holds:
                               1  3                                                   x    x þ 3
                                    A 5;       xðx þ 2Þ @ 24;   jx þ 2j < jx   5j;       >     :
                           ðaÞ  þ          ðbÞ               ðcÞ                ðdÞ
                               x  2x                                                x þ 2  3x þ 1
                                         1
                                                                                     1
                           Ans.  (a)0 < x @ ,  (b)  6 @ x @ 4,  (c) x < 3=2,  (d) x > 3;  1 < x <   ,or x <  2
                                         2
                                                                                     3
                     1.48.  Prove  (a) jx þ yj @ jxjþjyj,  (b) jx þ y þ zj @ jxjþjyjþjzj,  (c) jx   yj A jxj jyj.
                                                        2
                                                     2
                                                 2
                     1.49.  Prove that for all real x; y; z, x þ y þ z A xy þ yz þ zx:
                             2
                                 2
                                             2
                                         2
                     1.50.  If a þ b ¼ 1 and c þ d ¼ 1, prove that ac þ bd @ 1.
                                                1       1
                                                     n
                     1.51.  If x > 0, prove that x nþ1  þ  > x þ  where n is any positive integer.
                                               x nþ1   x n
                     1.52.  Prove that for all real a 6¼ 0, ja þ 1=aj A 2:
                     1.53.  Show that in Schwarz’s inequality (Problem 13) the equality holds if and only if a p ¼ kb p , p ¼ 1; 2; 3; ... ; n
                           where k is any constant.
                                                    1
                     1.54.  If a 1 ; a 2 ; a 3 are positive, prove that ða 1 þ a 2 þ a 3 Þ A  p a 1 a 2 a 3 .
                                                                   ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                  3
                                                    3
                     EXPONENTS, ROOTS, AND LOGARITHMS
                                                           s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                     1.55.  Evaluate  (a)4 log 2 8 ,  (b)  3  log  1  Þ,  (c)  ð0:00004Þð25,000Þ ,  (d)3  2log 3 5 ,  1 4=3   2=3
                                              4  1=8 128         5                   (e) ð  Þ   ð 27Þ
                                                                                          8
                                                   ð
                                                             ð0:02Þ ð0:125Þ
                           Ans.  (a) 64,  (b)7/4,  (c) 50,000,  (d)1/25,  (e)  7=144
                                                                 r
                     1.56.  Prove  (a)log MN ¼ log M þ log N,  (b)log M ¼ r log M indicating restrictions, if any.
                                     a
                                                     a
                                                                       a
                                                              a
                                              a
                     1.57.  Prove b log b a  ¼ a giving restrictions, if any.
   22   23   24   25   26   27   28   29   30   31   32