Page 236 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 236

CHAP. 9]                       MULTIPLE INTEGRALS                               227

                                                              ðð
                                                                   2  2                 a 2
                     9:31:  If r is the region of Problem 9.30, evaluate  e  ðx þy Þ  dx dy:  Ans:   ð1   e  Þ
                                                              r

                     9.32.  By using the transformation x þ y ¼ u; y ¼ uv,show that
                                                      ð 1  ð  1 x       e   1
                                                             e y=ðxþyÞ  dy dx ¼
                                                       x¼0  y¼0           2

                                                                     3
                                                                                                 3
                                                                           3
                     9.33.  Find the area of the region bounded by xy ¼ 4; xy ¼ 8; xy ¼ 5; xy ¼ 15.  [Hint: Let xy ¼ u; xy ¼ v.]
                           Ans:  2ln 3
                     9.34.  Show that the volume generated by revolving the region in the first quadrant bounded by the parabolas
                                 2
                           2
                                       2
                                                                                2
                                                                                      2
                                             2
                           y ¼ x; y ¼ 8x; x ¼ y; x ¼ 8y about the x-axis is 279 =2.  [Hint: Let y ¼ ux; x ¼ vy.]
                                                                                       3
                                                                                             3
                                                                           3
                                                                                 3
                     9.35.  Find the area of the region in the first quadrant bounded by y ¼ x ; y ¼ 4x ; x ¼ y ; x ¼ 4y .
                           Ans:  1
                                8
                                                                           ðð
                                                                                 x   y      sin 1
                     9.36.  Let r be the region bounded by x þ y ¼ 1; x ¼ 0; y ¼ 0. Show that  cos  dx dy ¼  .[Hint: Let
                           x   y ¼ u; x þ y ¼ v.]                                x þ y       2
                                                                            r
                     TRIPLE INTEGRALS
                                    ð  1  ð 1  ð 2
                     9.37.  (a) Evaluate      ffiffiffiffiffiffiffiffiffiffi xyz dz dy dx:  ðbÞ Give a physical interpretation to the integral in (a).
                                             p
                                               2
                                     x¼0 y¼0  z¼  x þy 2
                           Ans:    3
                                   8
                               ðaÞ
                     9.38.  Find the (a) volume and (b) centroid of the region in the first octant bounded by x=a þ y=b þ z=c ¼ 1,
                                                                 x
                           where a; b; c are positive.  Ans:  ðaÞ abc=6;  ðbÞ   x ¼ a=4;   y ¼ b=4;   z ¼ c=4
                                                                              z
                                                                        y
                     9.39.  Find the (a) moment of inertia and (b)radius of gyration about the z-axis of the region in Problem 9.38.
                                                   ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                     2
                                                  p
                                         2
                                                        2
                                                     2
                           Ans:  ðaÞ Mða þ b Þ=10;  ðbÞ  ða þ b Þ=10
                                                             2
                                                                2
                                                                    2
                     9.40.  Find the mass of the region corresponding to x þ y þ z @ 4; x A 0; y A 0; z A 0, if the density is equal
                           to xyz.  Ans:  4=3
                                                              2
                                                                  2
                     9.41.  Find the volume of the region bounded by z ¼ x þ y and z ¼ 2x.  Ans:   =2
                     TRANSFORMATION OF TRIPLE INTEGRALS
                                                                    2
                                                                 2
                     9.42.  Find the volume of the region bounded by z ¼ 4   x   y and the xy plane.  Ans:  8
                     9.43.  Find the centroid of the region in Problem 9.42, assuming constant density  .
                           Ans:    y   z  4
                                          3
                                  x x ¼   y ¼ 0;  z ¼
                                    ððð q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                          2
                                              2
                                                 2
                     9.44.  (a) Evaluate  x þ y þ z dx dy dz, where r is the region bounded by the plane z ¼ 3 and the cone
                                     r
                                2
                              p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2
                               x þ y .(b)Give a physical interpretation of the integral in (a). [Hint: Perform the integration in
                           z ¼
                                                                       ffiffiffi
                                                                      p
                           cylindrical coordinates in the order  ; z; .]  Ans:  27 ð2 2   1Þ=2
                                                                     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi        2   2
                                                                        2
                                                                           2
                     9.45.  Show that the volume of the region bonded by the cone z ¼  x þ y and the paraboloid z ¼ x þ y is  =6.
                     9.46.  Find the moment of inertia of a right circular cylinder of radius a and height b, about its axis if the density is
                           proportional to the distance from the axis.  Ans:  3 Ma 2
                                                                  5
   231   232   233   234   235   236   237   238   239   240   241