Page 234 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 234

CHAP. 9]                       MULTIPLE INTEGRALS                               225


                           (b)Letting   ¼  ,the volume of the sphere thus obtained is
                                                         2 a 3        4  3
                                                            ð1   cos  Þ¼  a
                                                          3           3

                               Find the centroid of the region in Problem 9.19.
                     9.20. ðaÞ
                           (b)  Use the result in (a)to find the centroid of a hemisphere.
                                          y
                                                                    x
                                         x
                                            z
                                                                       y
                           (a) The centroid ð   x;   y;   zÞ is, due to symmetry, given by   x ¼   y ¼ 0 and
                                                                           ÐÐÐ
                                                   Total moment about xy plane  z  dV
                                                                         ¼ ÐÐÐ
                                                  z z ¼
                                                          Total mass            dV
                              Since z ¼ r cos   and   is constant the numerator is
                                          =2   a                        =2
                                        ð  ð    ð                     ð  ð    4 a

                                                        2
                                      4           r cos     r sin   dr d  d  ¼ 4   r      sin   cos   d  d
                                          ¼0  ¼0 r¼0                    ¼0  ¼0 4    r¼0
                                                                        =2
                                                                       ð  ð
                                                                  ¼  a 4     sin   cos   d  d
                                                                        ¼0  ¼0
                                                                                       4
                                                                                          2
                                                                       ð  =2  2         a sin
                                                                  ¼  a 4  sin        d  ¼
                                                                        ¼0  2     ¼0    4
                                                                                               3
                                                                                           2
                                  The denominator, obtained by multiplying the result of Problem 9.19(a)by  ,is   a ð1   cos  Þ.
                                                                                           3
                              Then
                                                            4
                                                               2
                                                        1   a sin    3
                                                        4          ¼ að1 þ cos  Þ:
                                                       2  3          8
                                                      z z ¼
                                                       3    a ð1   cos  Þ
                                             3
                                          z
                           (b)Letting   ¼  =2;   z ¼ a.
                                             8
                     MISCELLANEOUS PROBLEMS
                                         1  ð 1  x   y     1       1  ð 1  x   y       1
                                        ð                         ð
                     9.21. Prove that  (a)        3  dy dx ¼ ,(b)           3  dx dy ¼  .
                                         0  0 ðx þ yÞ      2      0  0 ðx þ yÞ         2
                               1  1  x   y       1  1
                               ð   ð            ð   ð
                                                              dy dx
                                                    2x  ðx þ yÞ
                                        3                  3
                           ðaÞ           dy dx ¼
                               0  0 ðx þ yÞ      0  0  ðx þ yÞ
                                                 1
                                                    1
                                                ð   ð    2x    1
                                                                    dy dx
                                                          3       2
                                              ¼
                                                 0  0 ðx þ yÞ  ðx þ yÞ
                                                 1
                                                ð                1
                                                     x      1
                                                                  dx
                                                        2  x þ y
                                              ¼          þ
                                                 0 ðx þ yÞ      y¼0
                                                 1  dx      1    1
                                                ð               1

                                                       2  x þ 1     2
                                              ¼         ¼      ¼
                                                 0 ðx þ 1Þ    0
                                                                                   1
                                                                                  ð   ð 1  y   x     1
                           (b) This follows at once on formally interchanging x and y in (a)to obtain  3  dx dy ¼  2  and
                              then multiplying both sides by  1.                   0  0 ðx þ yÞ
                                  This example shows that interchange in order of integration may not always produce equal results.
                              Asufficient condition under which the order may be interchanged is that the double integral over the
                                                                     ðð
                                                                         x   y
                              corresponding region exists.  In this case      dx dy, where r is the region
                                                                             3
                                                                        ðx þ yÞ
                                                                      r
                              0 @ x @ 1; 0 @ y @ 1fails to exist because of the discontinuity of the integrand at the origin.  The
                              integral is actually an improper double integral (see Chapter 12).
                                     x  t            x
                                    ð   ð           ð
                     9.22. Prove that    FðuÞ du dt ¼  ðx   uÞFðuÞ du.
                                     0  0            0
   229   230   231   232   233   234   235   236   237   238   239