Page 230 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 230

CHAP. 9]                       MULTIPLE INTEGRALS                               221

                                             ðð ð
                                                dx dy dz
                           ðaÞ  Required volume ¼
                                              r
                                                      2
                                              2  6  4 x
                                             ð  ð  ð
                                                       dz dy dx
                                           ¼
                                              x¼0  y¼0  z¼0
                                              2  6
                                             ð  ð
                                                       2
                                                   ð4   x Þ dy dx
                                           ¼
                                              x¼0  y¼0
                                              2
                                             ð          6

                                                ð4   x Þy  dx
                                                    2
                                           ¼

                                              x¼0      y¼0
                                             ð  2
                                                      2
                                                ð24   6x Þ dx ¼ 32
                                           ¼
                                              x¼0
                                                  2
                                         2   6  4 x
                                        ð   ð  ð
                                                     dz dy dx ¼ 32  by part (a), since   is constant. Then
                           (b) Total mass ¼
                                         x¼0 y¼0 z¼0
                                                                ð 2  ð 6  ð 4 x 2
                                                                            xdz dydx
                                         Total moment about yz plane  x¼0 y¼0 z¼0    24   3
                                               Total mass      ¼     Total mass    ¼  32   ¼  4
                                        x x ¼
                                                                Ð  2  Ð  6  Ð  4 x 2
                                         Total moment about xz plane  x¼0 y¼0 z¼0   ydz dydx  96
                                        y y ¼                  ¼                  ¼    ¼ 3
                                               Total mass            Total mass     32
                                                                ð 2  ð 6  ð 4 x 2
                                                                            zdz dydx
                                         Total moment about xy plane  x¼0 y¼0 z¼0    256 =5  8
                                               Total mass            Total mass       32    5
                                        z z ¼                  ¼                   ¼      ¼
                           Thus, the centroid has coordinates ð3=4; 3; 8=5Þ.
                                                y
                              Note that the value for   y could have been predicted because of symmetry.
                     TRANSFORMATION OF TRIPLE INTEGRALS
                     9.13. Justify equation (11), Page 211, for changing variables in a triple integral.
                              By analogy with Problem 9.6, we construct a grid of curvilinear coordinate surfaces which subdivide the
                           region r into subregions, a typical one of which is  r (see Fig. 9-17).
















                                                              Fig. 9-17
   225   226   227   228   229   230   231   232   233   234   235