Page 229 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 229

220                            MULTIPLE INTEGRALS                          [CHAP. 9



                          (c)  The triple integral can be expressed as the iterated integral
                                   ð a  ð a x  ð a x y
                                                       2
                                                   2
                                                2
                                              ðx þ y þ z Þ dz dy dx
                                    x¼0  y¼0  z¼0

                                                 ð a  ð  a x     3 a x y
                                                        2   2   z
                                                                      dy dx
                                               ¼       x z þ y z þ
                                                 x¼0 y¼0        3    z¼0
                                                       (                                  )
                                                 ð a  ð a x                              3
                                                         2        2        2  3  ða   x   yÞ
                                               ¼        x ða   xÞ  x y þða   xÞy   y þ  3  dy dx
                                                 x¼0 y¼0
                                                 a           x y  ða   xÞy  y
                                                 ð            2 2       3   4         4 a x

                                                     2                        ða   x   yÞ
                                                                                          dx
                                               ¼    x ða   xÞy    þ
                                                 x¼0          2      3     4      12    y¼0
                                                  (                                       )
                                                 a
                                                 ð           2     2       4      4       4
                                                    2     2  x ða   xÞ  ða   xÞ  ða   xÞ  ða   xÞ
                                               ¼   x ða   xÞ        þ              þ        dx
                                                 0              2       3       4      12
                                                  (               )
                                                 ð a  2   2      4      a 5
                                                   x ða   xÞ  ða   xÞ
                                               ¼           þ       dx ¼
                                                 0    2        6       20
                                 The integration with respect to z (keeping x and y constant) from z ¼ 0to z ¼ a   x   y corre-
                              sponds to summing the polar moments of inertia (or masses) corresponding to each cube in a vertical
                              column.  The subsequent integration with respect to y from y ¼ 0to y ¼ a   x (keeping x constant)
                              corresponds to addition of contributions from all vertical columns contained in a slab parallel to the yz
                              plane. Finally, integration with respect to x from x ¼ 0to x ¼ a adds up contributions from all slabs
                              parallel to the yz plane.
                                 Although the above integration has been accomplished in the order z; y; x, any other order is
                              clearly possible and the final answer should be the same.
                     9.12. Find the  (a) volume and  (b) centroid of the region r bounded by the parabolic cylinder
                                  2
                          z ¼ 4   x and the planes x ¼ 0, y ¼ 0, y ¼ 6, z ¼ 0 assuming the density to be a constant  .
                              The region r is shown in Fig. 9-16.















                                                              Fig. 9-16
   224   225   226   227   228   229   230   231   232   233   234