Page 224 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 224

CHAP. 9]                       MULTIPLE INTEGRALS                               215

                                                                                ffiffiffiffiffiffiffiffi
                                                                               p
                                                                            "# 2 x 2
                                                              p ffiffiffiffiffiffiffiffi
                                                            1
                                                 b
                                                                             y
                                                ð ð  f 2   ð ð  2 x 2     ð  1  2
                                                                                   xdx
                           ðbÞ              M ¼       dy dx ¼     yx dy dx ¼
                                                 a  f 1     0  x 2         0 2
                                                                               x 2
                                                                  "         # 1
                                                 1 1    2   4      x  x   x    7
                                                ð                   2  4   6
                                                 0 2               2   8  12   24
                                              ¼    xð2   x   x Þ dx ¼        ¼
                                                                             0
                           (c)  The coordinates of the center of mass are defined to be
                                                                            b
                                                  b
                                               1  ð ð f 2 ðxÞ            1  ð ð f 2 ðxÞ
                                                      x   dy dx  and            y   dy dx
                                               M  a  f 1 ðxÞ             M  a  f 1 ðxÞ
                                              x x ¼                     y y ¼
                           where
                                                               b  f 2 ðxÞ
                                                              ð ð
                                                                     dy dx
                                                          M ¼
                                                               a  f 1 ðxÞ
                           Thus,
                                                                    ffiffiffiffiffiffiffiffi
                                                                   p
                                                                "# 2 x 2
                                               p ffiffiffiffiffiffiffiffi
                                             1
                                            ð ð  2 x 2      ð 1  2         ð  1
                                                                                        4
                                                                                    2
                                         x                    x 2 y          x 2 1 ½2   x   x Š dx
                                       M   x ¼     xxy dy dx ¼   2     dx ¼    2
                                             0  x 2          0              0
                                                                   x 2
                                            "  3  5   7 # 1
                                             x   x   x    1  1   1   17
                                              3  10  14   3  10  14  105
                                           ¼            ¼         ¼
                                                       0
                                               p ffiffiffiffiffiffiffiffi
                                             1  2 x          13     2
                                            ð ð   2               p ffiffiffi
                                         y                     þ 4
                                       M   y ¼     yx dy dx ¼
                                             0  x 2          120  15
                                                                                          2   2   2
                      9.4. Find the volume of the region common to the intersecting cylinders x þ y ¼ a  and
                            2  2    2
                           x þ z ¼ a .
                                          Required volume ¼ 8 times volume of region shown in Fig. 9-9
                                                              p ffiffiffiffiffiffiffiffiffiffi
                                                                2
                                                          ð a  ð  a  x 2
                                                       ¼ 8        zdy dx
                                                           x¼0 y¼0
                                                              p ffiffiffiffiffiffiffiffiffiffi
                                                          ð a  ð  2  2
                                                                    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                               a  x p
                                                                        2
                                                                     2
                                                       ¼ 8          a   x dy dx
                                                           x¼0 y¼0
                                                           a           16a
                                                          ð               3
                                                              2
                                                                  2
                                                       ¼ 8   ða   x Þ dx ¼
                                                           x¼0          3
                              As an aid in setting up this integral, note that zdy dx corresponds to the volume of a column such as
                           shown darkly shaded in the figure.  Keeping x constant and integrating with respect to y from y ¼ 0to
                               ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                              p  2  2
                               a   x corresponds to adding the volumes of all such columns in a slab parallel to the yz plane, thus
                           y ¼
                           giving the volume of this slab.  Finally, integrating with respect to x from x ¼ 0to x ¼ a corresponds to
                           adding the volumes of all such slabs in the region, thus giving the required volume.
                      9.5. Find the volume of the region bounded by
                                                   z ¼ x þ y; z ¼ 6; x ¼ 0; y ¼ 0; z ¼ 0
   219   220   221   222   223   224   225   226   227   228   229