Page 221 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 221

212                            MULTIPLE INTEGRALS                          [CHAP. 9






























                                                            Fig. 9-5


                        In the cylindrical case r ¼   cos  i þ   sin  j þ zk and the set is
                                        @r                @r                    @r
                                          ¼ cos  i þ sin  j;  ¼   sin  i þ   cos  j;  ¼ k
                                        @                @                     @z
                             @r @r   @r
                     Therefore         ¼  .
                             @  @    @z                @r @r  @r
                        That the geometric interpretation of        d  d  dz is an infinitesimal rectangular parallele-
                                                      @  @    @z
                     piped suggests the differential element of volume in cylindrical coordinates is
                                                        dV ¼   d  d  dz

                        Thus, for an integrable but otherwise arbitrary function, Fð ;  ; zÞ,of cylindrical coordinates, the
                     iterated triple integral takes the form
                                                 ð ð   ð
                                                  z 2  g 2 ðzÞ  f 2 ð ;zÞ
                                                            Fð ;  ; zÞ  d  d  dz
                                                  z 1  g 1 ðzÞ  f 1 ð ;zÞ
                        The differential element of area for polar coordinates in the plane results by suppressing the z
                     coordinate. It is

                                                           @r
                                                               @r
                                                                    d  d
                                                      dA ¼
                                                            @   @
                     and the iterated form of the double integral is
                                                     ð ð
                                                        2    2 ð Þ
                                                            Fð ;  Þ  d  d
                                                        1    1 ð Þ
                        The transformation equations relating spherical and rectangular Cartesian coordinates are
                                          x ¼ r sin   cos  ;  y ¼ r sin   sin  ;  z ¼ r cos
                        In this case the coordinate surfaces are spheres, cones, and planes.  (See Fig. 9-5.)
   216   217   218   219   220   221   222   223   224   225   226