Page 226 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 226

CHAP. 9]                       MULTIPLE INTEGRALS                               217


                              Let P be any point with coordinates ðx; yÞ or ðu; vÞ, where x ¼ f ðu; vÞ and y ¼ gðu; vÞ. Then the vector r
                           from O to P is given by r ¼ xi þ yj ¼ f ðu; vÞi þ gðu; vÞj. The tangent vectors to the coordinate curves u ¼ c 1
                           and v ¼ c 2 , where c 1 and c 2 are constants, are @r=@v and @r=@u, respectively. Then the area of region  r of

                                                       @r  @r
                           Fig. 9-11 is given approximately by         u  v.
                                                       @u     @v
                              But

                                                         i  j
                                                               k
                                                                      @x @y
                                                        @x  @y

                                                @r  @r               @u     @ðx; yÞ
                                                      ¼ @u  @u  0    ¼     @u   k ¼  k

                                                @u  @v               @x @y

                                                         @x  @y              @ðu; vÞ
                                                                    @v  @v

                                                               0
                                                        @v  @v

                                                       @r  @r        @ðx; yÞ
                           so that                             u  v ¼         u  v
                                                       @u  @v         @ðu; vÞ
                              The double integral is the limit of the sum

                                                    X

                                                                    @ðx; yÞ
                                                                            u  v
                                                       Ff f ðu; vÞ; gðu; vÞg

                                                                    @ðu; vÞ
                           taken over the entire region r.  Aninvestigation reveals that this limit is
                                                     ðð
                                                                      @ðx; yÞ
                                                                         du dv

                                                       Ff f ðu; vÞ; gðu; vÞg

                                                                    @ðu; vÞ
                                                     r 0
                           where r is the region in the uv plane into which the region r is mapped under the transformation
                                 0
                           x ¼ f ðu; vÞ; y ¼ gðu; vÞ.
                              Another method of justifying the above method of change of variables makes use of line integrals and
                           Green’s theorem in the plane (see Chapter 10, Problem 10.32).
                                 2
                                     2
                      9.7. If u ¼ x   y and v ¼ 2xy, find @ðx; yÞ=@ðu; vÞ in terms of u and v.

                                                                  2x  2y
                                                 @ðu; vÞ  u x  u y           2  2

                                                      ¼       ¼          ¼ 4ðx þ y Þ
                                                        v x  v y
                                                                  2y  2x
                                                 @ðx; yÞ
                                             2
                                                          2 2
                                                 2 2
                                                                 2
                                                      2
                              From the identify ðx þ y Þ ¼ðx   y Þ þð2xyÞ we have
                                                                             p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                        2
                                                                          2
                                                2
                                                                       2
                                                   2 2
                                                                                2
                                              ðx þ y Þ ¼ u þ v 2  and  x þ y ¼  u þ v 2
                              Then by Problem 6.43, Chapter 6,
                                                           1         1        1
                                                @ðx; yÞ
                                                                    2   2
                                                    ¼           ¼         ¼ p  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                              2
                                                @ðu; vÞ  @ðu; vÞ=@ðx; yÞ   4 u þ v 2
                                                                  4ðx þ y Þ
                           Another method:  Solve the given equations for x and y in terms of u and v and find the Jacobian directly.
                                                                                               2
                                                                                                   2
                      9.8. Find the polar moment of inertia of the region in the xy plane bounded by x   y ¼ 1,
                                2
                            2
                           x   y ¼ 9, xy ¼ 2; xy ¼ 4 assuming unit density.
                                                      2
                                                  2
                              Under the transformation x   y ¼ u,2xy ¼ v the required region r in the xy plane [shaded in Fig.
                           9-12(a)] is mapped into region r of the uv plane [shaded in Fig. 9-12(b)].  Then:
                                                   0
                                                              ðð             ðð
                                                                  2  2          2   2 @ðx; yÞ

                                                                                             du dv
                                   Required polar moment of inertia ¼  ðx þ y Þ dx dy ¼  ðx þ y Þ

                                                                                      @ðu; vÞ
                                                               r             r  0
                                                              ðð                  ð 9  ð 8
                                                                 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  du dv  1
                                                                   2
                                                                  u þ v 2               du dv ¼ 8
                                                            ¼           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼
                                                                          2
                                                                       4 u þ v 2  4 u¼1 v¼4
                                                               r  0
                           where we have used the results of Problem 9.7.
   221   222   223   224   225   226   227   228   229   230   231