Page 227 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 227

218                            MULTIPLE INTEGRALS                          [CHAP. 9

























                                                              Fig. 9-12
                              Note that the limits of integration for the region r can be constructed directly from the region r in the
                                                                  0
                          xy plane without actually constructing the region r .In such case we use a grid as in Problem 9.6. The
                                                                0
                          coordinates ðu; vÞ are curvilinear coordinates, in this case called hyperbolic coordinates.
                                  ðð q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                                2
                                                                                            2
                                           2
                                       2
                      9.9. Evaluate   x þ y dx dy, where r is the region in the xy plane bounded by x þ y ¼ 4 and
                                   r
                               2
                           2
                          x þ y ¼ 9.
                                           2
                                              2
                              The presence of x þ y suggests the use of polar coordinates ð ;  Þ, where x ¼   cos  ; y ¼   sin   (see
                          Problem 6.39, Chapter 6). Under this transformation the region r [Fig. 9-13(a)below] is mapped into the
                          region r [Fig. 9-13(b)below].
                                 0














                                                              Fig. 9-13
                              Since  @ðx; yÞ  ¼  ,itfollows that
                                  @ð ;  Þ
                                                         ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi       ðð
                                       ðð q
                                          ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ðð q
                                                                @ðx; yÞ
                                           2   2         x þ y 2                   d  d
                                                          2
                                          x þ y dx dy ¼             d  d  ¼

                                                               @ð ;  Þ
                                       r              r  0                 r  0

                                                      ð 2   ð 3     ð 2   3 3  ð 2   19  38
                                                             2

                                                    ¼         d  d  ¼        d  ¼   d  ¼  3
                                                       ¼0   ¼2        ¼0 3  2    ¼0 3
   222   223   224   225   226   227   228   229   230   231   232