Page 235 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 235

226                            MULTIPLE INTEGRALS                          [CHAP. 9


                                       x
                                      ð   ð t             ð z
                                           FðuÞ du dt;      ðx   uÞFðuÞ du:  Then
                              Let IðxÞ¼              JðxÞ¼
                                       0  0                0
                                                          z              z
                                                         ð              ð
                                                          FðuÞ du;        FðuÞ du
                                                    0              0
                                                   I ðxÞ¼         J ðxÞ¼
                                                          0              0
                          using Leibnitz’s rule, Page 186. Thus, I ðxÞ¼ J ðxÞ, and so IðxÞ  JðxÞ¼ c, where c is a constant. Since
                                                              0
                                                        0
                          Ið0Þ¼ Jð0Þ¼ 0, c ¼ 0, and so IðxÞ¼ JðxÞ.
                              The result is sometimes written in the form
                                                      x  x        x
                                                     ð ð         ð
                                                              2
                                                         FðxÞ dx ¼  ðx   uÞFðuÞ du
                                                      0  0        0
                          The result can be generalized to give (see Problem 9.58)
                                                x
                                               ð ð x  ð x            ð x
                                                            n    1         n 1
                                                        FðxÞ dx ¼     ðx   uÞ  FðuÞ du
                                                0  0  0        ðn   1Þ! 0
                                                Supplementary Problems

                     DOUBLE INTEGRALS
                                                                 2
                     9.23.  (a) Sketch the region r in the xy plane bounded by y ¼ 2x and y ¼ x.(b)Find the area of r.(c)Find
                          the polar moment of inertia of r assuming constant density  .
                          Ans.(b)  2  ;  ðcÞ 48 =35 ¼ 72M=35, where M is the mass of r.
                                  3
                                                                               4
                     9.24.  Find the centroid of the region in the preceding problem.  Ans.    x x ¼ ;   y ¼ 1
                                                                                 y
                                                                               5
                                    p ffiffiffiffiffiffi
                                3    4 y
                               ð   ð
                     9.25.  Given      ðx þ yÞ dx dy.  (a) Sketch the region and give a possible physical interpretation of the
                                y¼0 x¼1
                          double integral.  (b)Interchange the order of integration.  (c) Evaluate the double integral.
                                   ð 2  ð 4 x 2
                          Ans:  ðbÞ       ðx þ yÞ dy dx;  ðcÞ 241=60
                                    x¼1 y¼0
                                    ð  2  ð x   x      ð 4  ð  2   x
                     9:26:  Show that       sin  dy dx þ      sin  dy dx ¼  4ð  þ 2Þ :
                                           ffiffi  2y           p ffiffi  2y         3
                                     x¼1 y¼ x           x¼2  y¼ x
                                          p
                     9.27.  Find the volume of the tetrahedron bounded by x=a þ y=b þ z=c ¼ 1 and the coordinate planes.
                          Ans. abc=6
                                                              3
                                                                 2
                     9.28.  Find the volume of the region bounded by z ¼ x þ y ; z ¼ 0; x ¼ a; x ¼ a; y ¼ a; y ¼ a.
                                 4
                          Ans.8a =3
                     9.29.  Find  (a)the moment of inertia about the z-axis and  (b)the centroid of the region in Problem 9.28
                          assuming a constant density  .
                                             2
                          Ans.(a)  112 6  14 Ma , where M ¼ mass;  x  y  z  7  a 2
                                  45  a   ¼  15              (b)   x ¼   y ¼ 0;   z ¼  15
                     TRANSFORMATION OF DOUBLE INTEGRALS
                                     ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                 ðð q
                                                                        2
                                         2
                                      2
                                                                2
                                                                    2
                     9.30.  Evaluate  x þ y dx dy, where r is the region x þ y @ a .  Ans.  2 3  a 3
                                  r
   230   231   232   233   234   235   236   237   238   239   240