Page 273 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 273

264       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10


                                                                                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2
                                                                                             EG   F du dv.
                     10.86. (a)Referring to Problem 10.85, show that the element of surface area is given by dS ¼
                                                                      ðð
                                                                        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                               2
                          (b)Deduce from (a)that the area of a surface r ¼ rðu; vÞ is  EG   F du dv.
                                                                       S
                                                           s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                   @r        @r  @r   @r    @r
                                                       @r
                          [Hint:  Use  the  fact  that                          and  then  use  the  identity
                                                   @u  @v    @u  @v   @u    @v
                                                           ¼
                          ðA   BÞ ðC   DÞ¼ ðA   CÞðB   DÞ  ðA   DÞðB   CÞ.
                     10.87. (a)Prove that r ¼ a sin u cos v i þ a sin u sin v j þ a cos u,0 @ u @  ; 0 @ v < 2  represents a sphere of
                                                                                        2
                          radius a.  (b)Use Problem 10.86 to show that the surface area of this sphere is 4 a .
                     10.88. Use the result of Problem 10.34 to obtain div A in (a)cylindrical and (b)spherical coordinates. See Page
                          161.
   268   269   270   271   272   273   274   275   276   277   278