Page 269 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 269

260       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10


                                 ð
                                                                                  2
                                                                              2
                     10.39. Evaluate  ð2x þ yÞ ds, where C is the curve in the xy plane given by x þ y ¼ 25 and s is the arc length
                                  C
                          parameter, from the point ð3; 4Þ to ð4; 3Þ along the shortest path.  Ans:  15
                                                           ð
                                                  2
                     10.40. If F ¼ð3x   2yÞi þð y þ 2zÞj   x k,evaluate  F   dr from ð0; 0; 0Þ to ð1; 1; 1Þ, where C is a path consisting
                                                           C
                                                     3
                                                2
                          of (a)the curve x ¼ t; y ¼ t ; z ¼ t ,(b)a straight line joining these points, (c)the straight lines from
                                                                                  2
                                                                                        2
                          ð0; 0; 0Þ to ð0; 1; 0Þ,thento ð0; 1; 1Þ and then to ð1; 1; 1Þ,(d)the curve x ¼ z ; z ¼ y .
                          Ans:  ðaÞ 23=15;  ðbÞ 5=3;  ðcÞ 0;  ðdÞ 13=15
                     10.41. If T is the unit tangent vector to a curve C (plane or space curve) and F is a given force field, prove that under
                                            ð       ð
                          appropriate conditions  F   dr ¼  F   T ds where s is the arc length parameter.  Interpret the result
                                             C       C
                          physically and geometrically.
                     GREEN’S THEOREM IN THE PLANE, INDEPENDENCE OF THE PATH
                                                       þ
                                                               3
                                                          2
                                                                      2
                     10.42. Verify Green’s theorem in the plane for  ðx   xy Þ dx þð y   2xyÞ dy where C is a square with vertices at
                                                        C
                          ð0; 0Þ; ð2; 0Þ; ð2; 2Þ; ð0; 2Þ and counterclockwise orientation.  Ans.  common value ¼ 8
                     10.43. Evaluate the line integrals of (a)Problem 10.36 and  (b)Problem 10.37 by Green’s theorem.
                     10.44. (a)Let C be any simple closed curve bounding a region having area A.Prove that if a 1 ; a 2 ; a 3 ; b 1 ; b 2 ; b 3 are
                          constants,
                                             þ
                                              ða 1 x þ a 2 y þ a 3 Þ dx þðb 1 x þ b 2 y þ b 3 Þ dy ¼ðb 1   a 2 ÞA
                                              C
                          (b) Under what conditions will the line integral around any path C be zero?  Ans.  (b) a 2 ¼ b 1

                     10.45. Find the area bounded by the hypocycloid x 2=3  þ y 2=3  ¼ a 2=3 .
                                                                                       2
                                                                 3
                                                        3
                          [Hint: Parametric equations are x ¼ a cos t; y ¼ a sin t; 0 @ t @ 2 .]  Ans:  3 a =8
                                                      þ            ð
                                                                     2
                     10.46. If x ¼   cos  ; y ¼   sin  ,prove that  1  1    d  and interpret.
                                                     2  xdy   ydx ¼  2
                                                        þ
                                                            3
                                                                       2
                                                               2
                     10.47. Verify Green’s theorem in the plane for  ðx   x yÞ dx þ xy dy, where C is the boundary of the region
                                                         C
                                                        2
                                                            2
                                            2
                                                2
                          enclosed by the circles x þ y ¼ 4 and x þ y ¼ 16.  Ans:  common value ¼ 120
                                      ð
                                       ð2;1Þ
                                                              3
                                               4
                                                         2
                     10.48. (a)Prove that  ð2xy   y þ 3Þ dx þðx   4xy Þ dy is independent of the path joining ð1; 0Þ and ð2; 1Þ.
                                      ð1;0Þ
                          (b) Evaluate the integral in (a).  Ans:  ðbÞ 5
                                  ð
                                                                                           2
                                                                2 2
                                       3
                                          2
                     10.49. Evaluate  ð2xy   y cos xÞ dx þð1   2y sin x þ 3x y Þ dy along the parabola 2x ¼  y from ð0; 0Þ to
                                   C
                                         2
                          ð =2; 1Þ.  Ans.    =4
                     10.50. Evaluate the line integral in the preceding problem around a parallelogram with vertices at ð0; 0Þ; ð3; 0Þ,
                          ð5; 2Þ; ð2; 2Þ.  Ans:  0
                                           2
                                                   2
                                                           2
                     10.51. (a)Prove that G ¼ð2x þ xy   2y Þ dx þð3x þ 2xyÞ dy is not an exact differential. (b)Prove that e  y=x G=x
                                                                                           2       2
                          is an exact differential of   and find  .(c)Find a solution of the differential equation ð2x þ xy   2y Þ dxþ
                             2
                          ð3x þ 2xyÞ dy ¼ 0.
                                                        2
                                          2
                          Ans:  ðbÞ   ¼ e  y=x ðx þ 2xyÞþ c;  ðcÞ x þ 2xy þ ce  y=x  ¼ 0
   264   265   266   267   268   269   270   271   272   273   274