Page 266 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 266

CHAP. 10]  LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS             257


                                  Alternatively, we may notice by inspection that
                                                   3      2 2                        2
                                          F   dr ¼ð2xz dx þ 3x z dzÞþð6ydx þ 6xdyÞ  ð2yz dy þ y dzÞ
                                                   2 3          2      2 3       2
                                               ¼ dðx z Þþ dð6xyÞ  dðy zÞ¼ dðx z þ 6xy   y z þ cÞ
                              from which   is determined.
                              Method 2: Since the integral is independent of the path, we can choose any path to evaluate it; in
                              particular, we can choose the path consisting of straight lines from ð1;  1; 1Þ to ð2;  1; 1Þ,thento
                              ð2; 1; 1Þ and then to ð2; 1;  1Þ.  The result is

                                            ð  2        ð  1           ð  1
                                                                             2
                                                                          ð12z   1Þ dz ¼ 15
                                               ð2x   6Þ dx þ  ð12   2yÞ dy þ
                                            x¼1          y¼ 1           z¼1
                              where the first integral is obtained from the line integral by placing y ¼ 1; z ¼ 1; dy ¼ 0; dz ¼ 0;
                              the second integral by placing x ¼ 2; z ¼ 1; dx ¼ 0; dz ¼ 0; and the third integral by placing
                              x ¼ 2; y ¼ 1; dx ¼ 0; dy ¼ 0.
                                      ð
                           (c)  Physically  F   dr represents the work done in moving an object from ð1;  1; 1Þ to ð2; 1;  1Þ along C.
                                       C
                              In a conservative force field the work done is independent of the path C joining these points.


                     MISCELLANEOUS PROBLEMS

                     10.32. (a)If x ¼ f ðu; vÞ; y ¼ gðu; vÞ defines a transformation which maps a region r of the xy plane into
                           a region r of the uv plane, prove that
                                    0
                                                               ðð
                                                      ðð
                                                                  @ðx; yÞ

                                                                         du dv
                                                         dx dy ¼

                                                                  @ðu; vÞ
                                                       r        r 0
                           (b) Interpret geometrically the result in (a).
                           (a)If C (assumed to be a simple closed curve) is the boundary of r,then byProblem 10.8,
                                                       ðð        þ
                                                                1
                                                                   xdy   ydx
                                                          dx dy ¼                                     ð1Þ
                                                                2 C
                                                        r
                              Under the given transformation the integral on the right of (1)becomes
                                                                    ð
                                  1     @y   @y       @x    @x     1     @y   @x       @y   @x
                                   þ
                                      x   du þ  dv   y  du þ  dv ¼      x    y   du þ x    y   dv     ð2Þ
                                  2 C  0  @u  @v      @u    @v     2 C 0  @u  @u       @v   @v
                              where C is the mapping of C in the uv plane (we suppose the mapping to be such that C is a simple
                                                                                               0
                                    0
                              closed curve also).
                                  By Green’s theorem if r is the region in the uv plane bounded by C ,the right side of (2)equals
                                                   0
                                                                                   0
                                        ðð                                 ðð
                                       1     @  @y  @x   @  @y   @x            @x @y  @x @y
                                              x    y       x    y                       du dv
                                                                       du dv ¼
                                       2    @u  @v  @v  @v  @u   @u            @u @v  @v @u
                                        r 0                                r  0
                                                                           ðð
                                                                               @ðx; yÞ
                                                                                    du dv
                                                                         ¼

                                                                             @ðu; vÞ
                                                                           r  0
                                                                                                 ðð
                              where we have inserted absolute value signs so as to ensure that the result is non-negative as is  dx dy
                                  In general, we can show (see Problem 10.83) that                r

                                              ðð            ðð

                                                                           @ðx; yÞ
                                                                                  du dv
                                                 Fðx; yÞ dx dy ¼  Ff f ðu; vÞ; gðu; vÞg               ð3Þ

                                                                           @ðu; vÞ
                                               r            r  0
   261   262   263   264   265   266   267   268   269   270   271