Page 265 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 265

256       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10


                                                              @     @     @
                          (a) Necessity.  If A 1 dx þ A 2 dy þ A 3 dz ¼ d  ¼  dx þ  dy þ  dz,then
                                                              @x    @y    @z
                                                  @             @            @
                                                     ¼ A 1        ¼ A 2 ;       ¼ A 3
                                               ð1Þ          ð2Þ          ð3Þ
                                                  @x            @y           @z
                              Then by differentiating we have, assuming continuity of the partial derivatives,
                                                 @A 1  @A 2  @A 2  @A 3  @A 1  @A 3
                                                         ;           ;
                                                  @y  ¼  @x   @z  ¼  @y   @z  ¼  @x
                              which is precisely the condition r  A ¼ 0.
                              Another method:  If A 1 dx þ A 2 dy þ A 3 dz ¼ d ,then
                                                                 @    @   @
                                                                            k ¼r
                                                                 @x   @y  @z
                                                A ¼ A 1 i þ A 2 j þ A 3 k ¼  i þ  j þ
                              from which r  A ¼r   r  ¼ 0.
                              Sufficiency.  If r  A ¼ 0,thenbyProblem 10.29, A ¼r  and
                                                                      @     @     @
                                                                                     dz ¼ d
                                       A 1 dx þ A 2 dy þ A 3 dz ¼ A   dr ¼r    dr ¼  dx þ  dy þ
                                                                      @x    @y    @z
                                                 ð
                                                  ðx;y;zÞ
                                                      A 1 dx þ A 2 dy þ A 3 dz.
                          (b)From part (a),  ðx; y; zÞ¼
                                                  ða;b;cÞ
                                Then omitting the integrand A 1 dx þ A 2 dy þ A 3 dz,we have
                                            ð       ð      ð
                                             ðx 2 ;y 2 ;z 2 Þ  ðx 2 ;y 2 ;z 2 Þ  ðx 1 ;y 1 ;z 1 Þ
                                                  ¼               ¼  ðx 2 ; y 2 ; z 2 Þ   ðx 1 ; y 1 ; z 1 Þ
                                             ðx 1 ;y 1 ;z 1 Þ  ða;b;cÞ  ða;b;cÞ

                                               3
                                                                     2 2
                                                                          2
                     10.31. (a)Prove that F ¼ð2xz þ 6yÞi þð6x   2yzÞj þð3x z   y Þk is a conservative force field.
                                     ð
                          (b) Evaluate  F   dr where C is any path from ð1;  1; 1Þ to ð2; 1;  1Þ.  (c) Give a physical
                                      C
                          interpretation of the results.
                                                                 ð
                          (a)A force field F is conservative if the line integral  F   dr is independent of the path C joining any two
                                                                  C
                              points.  A necessary and sufficient condition that F be conservative is that r  F ¼ 0.

                                                       i       j       k
                                                      @        @       @


                                                                              ¼ 0;  F is conservative
                                                      @x      @y       @z
                                    Since here r  F ¼

                                                      3               2 2
                                                   2xz þ 6y 6x   2yz 3x z   y
                                                                          2
                                                                                         2
                                                              3
                                                                                    2 2
                          (b) Method 1:  By Problem 10.30, F   dr ¼ð2xz þ 6yÞ dx þð6x   2yzÞ dy þð3x z   y Þ dz is an exact dif-
                              ferential d , where   is such that
                                           @      3           @                @     2 2  2
                                              ¼ 2xz þ 6y        ¼ 6x   2yz       ¼ 3x z   y
                                        ð1Þ               ð2Þ              ð3Þ
                                            @x                @y               @z
                              From these we obtain, respectively,
                                        2 3                      2               2 3  2
                                     ¼ x z þ 6xy þ f 1 ð y; zÞ    ¼ 6xy   y z þ f 2 ðx; zÞ    ¼ x z   y z þ f 3 ðx; yÞ
                                                                        2 3
                                                           2
                              These are consistent if f 1 ðy; zÞ¼ y z þ c; f 2 ðx; zÞ¼ x z þ c; f 3 ðx; yÞ¼ 6xy þ c,inwhich case
                                            2
                                  2 3
                                ¼ x z þ 6xy   y z þ c.  Thus, by Problem 10.30,
                                               ð
                                                ð2;1; 1Þ
                                                            2 3      2    ð2;1; 1Þ
                                                     F   dr ¼ x z þ 6xy   y z þ cj  ¼ 15
                                                                          ð1; 1;1Þ
                                                ð1; 1;1Þ
   260   261   262   263   264   265   266   267   268   269   270