Page 261 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 261

252       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10



                          (b)If S 1 is the convex surface of the hemispherical region and S 2 is the base ðz ¼ 0Þ,then
                                                 p ffiffiffiffiffiffiffiffiffi                p ffiffiffiffiffiffiffiffiffi
                                                   2
                                                                              2
                                 ðð         ð a  ð  a  y 2  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð a  ð  a  y 2  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                     2                2  2   2  2                  2  2  2  2
                                   xz dy dz ¼         z  a   y   z dz dy          z  a   y   z dz dy
                                             y¼ a  z¼0                  y¼ a z¼0
                                 S 1
                                                      ffiffiffiffiffiffiffiffiffiffi
                                                       2
                                                     p
                                 ðð             ð a  ð  a  x 2  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                     2   3                 2  2   2  2  3
                                   ðx y   z Þ dz dx ¼     fx  a   x   z   z g dz dx
                                                 x¼ a x¼0
                                 S 1
                                                        ffiffiffiffiffiffiffiffiffiffi
                                                       p
                                                  a     a  x  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                  ð   ð  2  2
                                                                           3
                                                                        2
                                                                    2
                                                                 2
                                                           f x 2  a   x   z   z g dz dx

                                                  x¼ a z¼0
                                                      p ffiffiffiffiffiffiffiffiffiffi
                                                  a    a  x         q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                 ðð              ð   ð  2  2
                                         2                         2  2  2   2
                                   ð2xy þ y zÞ dx dy ¼       f2xy þ y  a   x   y g dy dx
                                                         p ffiffiffiffiffiffiffiffiffiffi
                                                          2
                                                  x¼ a y¼  a  x 2
                                 S 1
                                 ðð              ðð
                                                         3
                                                    2
                                     2
                                   xz dy dz ¼ 0;   ðx y   z Þ dz dx ¼ 0;
                                 S 2             S 2
                                                                        p ffiffiffiffiffiffiffiffiffiffi
                                                                    a    a  x
                                 ðð              ðð                ð   ð  2  2
                                         2               2
                                   ð2xy þ y zÞ dx dy ¼  f2xy þ y ð0Þg dx dy ¼  2xy dy dx ¼ 0
                                                                          p ffiffiffiffiffiffiffiffiffiffi
                                                                            2
                                                                    x¼ a  y¼  a  x 2
                                 S 2              S 2
                              By addition of the above, we obtain
                                            p ffiffiffiffiffiffiffiffiffiffi
                                              2                        p ffiffiffiffiffiffiffiffiffiffi
                                                                         2
                                        ð  a  ð  a  y 2  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð a  ð  a  x 2
                                                                             p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                   2
                                                                                      2
                                                    2
                                                           2
                                                        2
                                                                               2
                                       4         z 2  a   y   z dz dy þ 4   x 2  a   x   z dz dx
                                        y¼0 x¼0                     x¼0 z¼0
                                                                       p ffiffiffiffiffiffiffiffiffiffi
                                                                         2
                                                                   ð a  ð  a  x 2  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                               2
                                                                                   2
                                                                                       2
                                                                þ 4         y 2  a   x   y dy dx
                                                                    x¼0 y¼0
                              Since by symmetry all these integrals are equal, the result is, on using polar coordinates,
                                         p ffiffiffiffiffiffiffiffiffiffi
                                          2
                                     ð  a  ð  a  x 2  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð   =2  ð a  5
                                                                             p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 a
                                                                         2
                                                                            2
                                                                                2
                                                        2
                                                     2
                                                 2
                                                                                   2
                                   12        y 2  a   x   y dy dx ¼ 12    sin   a       d  d  ¼
                                     x¼0 y¼0                       ¼0  ¼0                    5
                     STOKES’ THEOREM
                     10.26. Prove Stokes’ theorem.
                              Let S be a surface which is such that its projections on the xy, yz, and xz planes are regions bounded by
                          simple closed curves, as indicated in Fig. 10-20. Assume S to have representation z ¼ f ðx; yÞ or x ¼ gðy; zÞ
                          or y ¼ hðx; zÞ, where f ; g; h are single-valued, continuous, and differentiable functions. We must show that
                                              ðð            ðð
                                                              ½r   ðA 1 i þ A 2 j þ A 3 kފ   n dS
                                                ðr   AÞ  n dS ¼
                                               S             S
                                                            ð
                                                              A   dr
                                                           ¼
                                                             C
                          where C is the boundary of S.
                                        ðð
                              Consider first  ½r   ðA 1 iފ   n dS:
                                         S

                                             i   j
                                                   k
                                             @  @

                                                    @    @A 1  @A 1
                                                                k;
                              Since r  ðA 1 iÞ¼       ¼    j
                                               @x  @y @z     @z  @y

                                                0   0
                                            A 1
   256   257   258   259   260   261   262   263   264   265   266