Page 257 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 257

248       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10



                     10.19. Find the centroid of the surface in Problem 10.17.
                                                            ðð
                                                                   ðð q
                                                                        ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                 2
                                                                            2
                                                              zdS    z 1 þ 4x þ 4y dx dy
                                                            S       r
                              By symmetry,   x ¼   y ¼ 0  and    z z ¼ ðð  ¼ ðð q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                        x
                                           y
                                                                            2
                                                                                2
                                                               dS      1 þ 4x þ 4y dx dy
                                                             S      r
                              The numerator and denominator can be obtained from the results of Problems 10.17(c) and 10.17(a),
                                                    37 =10  111
                                                 z            .
                                                    13 =3  130
                          respectively, and we thus have   z ¼  ¼
                                   ðð
                                                              2
                     10.20. Evaluate  A   n dS, where A ¼ xyi   x j þðx þ zÞk, S is that portion of the plane
                                    S
                          2x þ 2y þ z ¼ 6 included in the first octant, and
                          n is a unit normal to S. (See Fig. 10-16.)
                              A normal to S is rð2x þ 2y þ z   6Þ¼ 2i þ
                                         2i þ 2j þ k  2i þ 2j þ k
                                                            . Then
                          2j þ k, and so n ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼
                                          2
                                              2
                                         2 þ 2 þ 1 2   3

                                         2           2i þ 2j þ k
                                                        3
                              A   n ¼fxyi   x j þðx þ zÞkg
                                          2
                                   2xy   2x þðx þ zÞ
                                          3
                                  ¼
                                          2
                                   2xy   2x þðx þ 6   2x   2yÞ
                                  ¼
                                              3
                                          2
                                   2xy   2x   x   2y þ 6
                                  ¼
                                           3
                              The required surface integral is therefore           Fig. 10-16
                                               !                        !
                           ðð       2               ðð       2           q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                              2xy   2x   x   2y þ 6    2xy   2x   x   2y þ 6
                                                                                 2
                                                                              2
                                                                          1 þ z x þ z y dx dy
                                      3         dS ¼           3
                           S                        r
                                                    ðð       2          !
                                                       2xy   2x   x   2y þ 6  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                           2
                                                                                  2
                                                                              2
                                                                          1 þ 2 þ 2 dx dy
                                                               3
                                                  ¼
                                                    r
                                                     3  3 x
                                                    ð  ð
                                                                 2
                                                          ð2xy   2x   x   2y þ 6Þ dy dx
                                                  ¼
                                                     x¼0  y¼0
                                                     3
                                                    ð
                                                         2    2       2    3 x
                                                       ðxy   2x y   xy   y þ 6yÞj 0  dx ¼ 27=4
                                                  ¼
                                                     x¼0
                     10.21. In dealing with surface integrals we have restricted
                          ourselves to surfaces which are two-sided. Give an
                          example of a surface which is not two-sided.
                              Take a strip of paper such as ABCD as shown in the
                          adjoining Fig. 10-17. Twist the strip so that points A and
                          B fall on D and C, respectively, as in the adjoining figure.
                          If n is the positive normal at point P of the surface, we
                          find that as n moves around the surface, it reverses its
                          original direction when it reaches P again.  If we tried
                          to color only one side of the surface, we would find the
                          whole thing colored. This surface, called a Mo ¨bius strip,  Fig. 10-17
   252   253   254   255   256   257   258   259   260   261   262