Page 256 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 256

CHAP. 10]  LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS             247


                           (c)  If Uðx; y; zÞ¼ 3z,(2)becomes
                                        ðð                   ðð
                                            q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                  2    2              2  2       2   2
                                           3z 1 þ 4x þ 4y dx dy ¼  3f2  ðx þ y Þg 1 þ 4x þ 4y dx dy
                                         r                    r
                              or in polar coordinates,
                                                   2   p ffiffi
                                                  ð  ð  2
                                                              2  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2  111
                                                        3 ð2     Þ 1 þ 4  d  d  ¼
                                                    ¼0  ¼0                    10
                                  Physically this could represent the mass of S assuming a density ¼ 3z,or three times the first
                              moment of S about the xy plane.


                     10.18. Find the surface area of a hemisphere of radius a cut off
                           by a cylinder having this radius as diameter.

                              Equations for the hemisphere and cylinder (see Fig. 10-15)
                                                           2
                                                    2
                                                        2
                           are  given  respectively  by  x þ y þ z ¼ a 2  (or  z ¼
                           p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2  2  2  2  2
                                    2
                                2
                             2
                            a   x   y Þ and ðx   a=2Þ þ y ¼ a =4(or x þ y ¼ ax).
                              Since
                                        x                      y
                                                and
                               z x ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  z y ¼ p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         2
                                     2
                                                            2
                                                                2
                                    a   x   y 2            a   x   y 2
                           we have
                                                                                      Fig. 10-15
                                                                 ðð
                                                  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  a
                                              ðð q
                                                         2
                                                     2
                           Required surface area ¼ 2  1 þ z x þ z y dx dy ¼ 2  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dx dy
                                                                     2
                                                                         2
                                                                    a   x   y 2
                                              r                  r
                           Two methods of evaluation are possible.
                           Method 1: Using polar coordinates.
                                       2
                                   2
                              Since x þ y ¼ ax in polar coordinates is   ¼ a cos  ,the integral becomes
                                           ð   =2  ð a cos    a    ð  =2  p     a cos
                                                                          2
                                                                         ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                          2        p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi   d  d  ¼ 2a    a     2   d
                                                     2
                                            ¼0  ¼0  a     2          ¼0          ¼0
                                                                    ð   =2
                                                               ¼ 2a 2  ð1   sin  Þ d  ¼ð    2Þa 2
                                                                    0
                           Method 2: The integral is equal to
                                                                                    p ffiffiffiffiffiffiffiffiffiffi
                                              p ffiffiffiffiffiffiffiffiffiffi
                                          ð a  ð  ax x 2  a          ð  a      y      ax x 2
                                        2         p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi dy dx ¼ 2a  sin  1  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi      dx
                                                     2
                                                        2
                                          x¼0 y¼0   a   x   y 2       x¼0    ax   x 2   y¼0
                                                                            x
                                                                     ð  a  r ffiffiffiffiffiffiffiffiffiffiffi
                                                                 ¼ 2a  sin 1   dx
                                                                      0    a þ x
                                       2
                           Letting x ¼ a tan  ,this integral becomes
                                             ð  =4                         ð  =4
                                                                    2
                                                                                 2
                                                       2
                                          4a 2    tan   sec  d  ¼ 4a 2 1 2    tan  j  =4    1 2  tan   d
                                                                      0
                                              0                             0
                                                                           =4
                                                                         ð
                                                                               2
                                                                   2
                                                           ¼ 2a 2    tan  j  =4     ðsec     1Þ d
                                                                     0
                                                                          0
                                                               n              o
                                                              2              =4        2
                                                           ¼ 2a  =4  ðtan      Þj 0  ¼ð    2Þa
                              Note that the above integrals are actually improper and should be treated by appropriate limiting
                           procedures (see Problem 5.74, Chapter 5, and also Chapter 12).
   251   252   253   254   255   256   257   258   259   260   261