Page 253 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 253

244       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10



                     10.13. Let P and Q be as in Problem 10.11.
                          (a)Prove that a necessary and sufficient condition that Pdx þ Qdy be an exact differential of a
                              function  ðx; yÞ is that @P=@y ¼ @Q=@x.
                                                  B             B
                                                 ð             ð
                          (b) Show that in such case  Pdx þ Qdy ¼  d  ¼  ðBÞ   ðAÞ where A and B are any two
                              points.             A             A
                          (a) Necessity.
                                                  @     @
                                                          dy,anexact differential, then (1) @ =@x ¼ P,(2) @ =@y ¼ 0.
                                 If Pdx þ Qdy ¼ d  ¼  dx þ
                                                  @x    @y
                              Thus, by differentiating (1) and (2)with respect to y and x, respectively, @P=@y ¼ @Q=@x since we are
                              assuming continuity of the partial derivatives.
                              Sufficiency.                         ð
                                 By Problem 10.12, if @P=@y ¼ @Q=@x,then  Pdx þ Qdy is independent of the path joining two
                              points. In particular, let the two points be ða; bÞ and ðx; yÞ and define

                                                              ð
                                                               ðx;yÞ
                                                                  Pdx þ Qdy
                                                        ðx; yÞ¼
                                                               ða;bÞ
                              Then
                                                            ð xþ x;y        ð  ðx;yÞ
                                                                               Pdx þ Qdy
                                           ðx þ  x; yÞ   ðx; yÞ¼  Pdx þ Qdy
                                                             ða;bÞ          ða;bÞ
                                                            ð
                                                             ðxþ x;yÞ
                                                                  Pdx þ Qdy
                                                          ¼
                                                             ðx;yÞ
                              Since the last integral is independent of the path joining ðx; yÞ and ðx þ  x; yÞ,wecan choose the path
                              to be a straight line joining these points (see Fig. 10-13) so that dy ¼ 0.  Then by the mean value
                              theorem for integrals,
                                                         1  ð ðxþ x;yÞ
                                                                                    0 <  < 1
                                        ðx þ  x; yÞ   ðx; yÞ
                                              x        ¼   x ðx;yÞ  Pdx ¼ Pðx þ    x; yÞ
                              Taking the limit as  x ! 0, we have @ =@x ¼ P.
                                 Similarly we can show that @ =@y ¼ Q.
                                                            @     @
                                                                    dy ¼ d :
                                 Thus it follows that Pdx þ Qdy ¼  dx þ
                                                            @x    @y
                                                y


                                                           (x, y)        (x + Dx, y)








                                                 (a, b)
                                                                              x
                                                              Fig. 10-13
   248   249   250   251   252   253   254   255   256   257   258