Page 248 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 248

CHAP. 10]  LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS             239


                                     ð       ð  1
                                                  2   2  3      2      3   2         2  3 2  3
                                       A   dr ¼  f3t   6ðt Þðt Þg dt þf2t þ 3ðtÞðt Þg dðt Þþf1   4ðtÞðt Þðt Þ g dðt Þ
                                     C        t¼0
                                             ð  1
                                                      5
                                                  2
                                                             3
                                                                            11
                                                                        2
                                                                 5
                                                ð3t   6t Þ dt þð4t þ 6t Þ dt þð3t   12t Þ dt ¼ 2
                                           ¼
                                              t¼0
                              Another method:
                                                 2
                                                               4
                                                           2
                                                                                                     3
                                                     5
                                                                        9
                                                                                                  2
                                  Along  C,  A ¼ð3t   6t Þi þð2t þ 3t Þj þð1   4t Þk  and  r ¼ xi þ yj þ zk ¼ ti þ t j þ t k,
                                          2
                              dr ¼ði þ 2tj þ 3t kÞ dt.  Then
                                          ð        ð 1
                                                      2
                                                                 3
                                                                     5
                                                          5
                                                                            2
                                                                                 11
                                                    ð3t   6t Þ dt þð4t þ 6t Þ dt þð3t   12t Þ dt ¼ 2
                                             A   dr ¼
                                           C        0
                           (b)Along the straight line from ð0; 0; 0Þ to ð0; 1; 1Þ, x ¼ 0; y ¼ 0; dx ¼ 0; dy ¼ 0, while z varies from 0 to 1.
                              Then the integral over this part of the path is
                                      ð 1                                           ð 1
                                            2                                 2
                                         f3ð0Þ   6ð0ÞðzÞg0 þf2ð0Þþ 3ð0ÞðzÞg0 þf1   4ð0Þð0Þðz Þg dz ¼  dz ¼ 1
                                       z¼0                                           z¼0
                                  Along the straight line from ð0; 0; 1Þ to ð0; 1; 1Þ, x ¼ 0; z ¼ 1; dx ¼ 0; dz ¼ 0, while y varies from 0
                              to 1.  Then the integral over this part of the path is
                                     ð 1                                           ð 1
                                           2                                   2
                                        f3ð0Þ   6ð yÞð1Þg0 þf2y þ 3ð0Þð1Þg dy þf1   4ð0Þð yÞð1Þ g0 ¼  2ydy ¼ 1
                                      y¼0                                           y¼0
                                  Along the straight line from ð0; 1; 1Þ to ð1; 1; 1Þ, y ¼ 1; z ¼ 1; dy ¼ 0; dz ¼ 0, while x varies from 0
                              to 1.  Then the integral over this part of the path is
                                    1                                           1
                                   ð                                           ð
                                         2                                 2        2
                                      f3x   6ð1Þð1Þg dx þf2ð1Þþ 3xð1Þg0 þf1   4xð1Þð1Þ g0 ¼  ð3x   6Þ dx ¼ 5
                                    x¼0                                         x¼0
                                         ð
                                 Adding,   A   dr ¼ 1 þ 1   5 ¼ 3:
                                          C
                           (c)  The straight line joining ð0; 0; 0Þ and ð1; 1; 1Þ is given in parametric form by x ¼ t; y ¼ t; z ¼ t. Then
                            ð       ð 1
                                                       2
                                                                 4
                                             2
                                         2
                                       ð3t   6t Þ dt þð2t þ 3t Þ dt þð1   4t Þ dt ¼ 6=5
                              A   dr ¼
                            C        t¼0
                     10.3. Find the work done in moving a particle once around an    y
                           ellipse C in the xy plane, if the ellipse has center at the    r = xi + yj
                           origin with semi-major and semi-minor axes 4 and 3,             = 4 cos t i + 3 sin t j
                           respectively, as indicated in Fig. 10-7, and if the force   r
                           field is given by                                            t          x
                                                                   2
                                                                       3
                                                       2
                           F ¼ð3x   4y þ 2zÞi þð4x þ 2y   3z Þj þð2xz   4y þ z Þk
                                                                    2
                              In the plane z ¼ 0; F ¼ð3x   4yÞi þð4x þ 2yÞj   4y k and
                           dr ¼ dxi þ dyj so that the work done is                    Fig. 10-7
                             þ        ð
                                                            2
                                F   dr ¼  fð3x   4yÞi þð4x þ 2yÞj   4y kg ðdxi þ dyjÞ
                              C       C
                                      þ
                                       ð3x   4yÞ dx þð4x þ 2yÞ dy
                                    ¼
                                      C
                              Choose the parametric equations of the ellipse as x ¼ 4cos t, y ¼ 3 sin t, where t varies from 0 to 2  (see
                           Fig. 10-7).  Then the line integral equals
                                        ð 2
                                           f3ð4cos tÞ  4ð3 sin tÞgf 4 sin tg dt þf4ð4cos tÞþ 2ð3 sin tÞgf3cos tg dt
                                         t¼0
                                          ð 2
                                                                         2
                                                                      2
                                             ð48   30 sin t cos tÞ dt ¼ð48t   15 sin tÞj 0 ¼ 96
                                        ¼
                                           t¼0
   243   244   245   246   247   248   249   250   251   252   253