Page 249 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 249

240       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10



                              In traversing C we have chosen the counterclockwise direction indicated in Fig. 10-7. We call this the
                          positive direction, or say that C has been traversed in the positive sense.  If C were tranversed in the
                          clockwise (negative) direction, the value of the integral would be  96 .

                                  ð
                                                                    ffiffiffi
                     10.4. Evaluate  yds along the curve C given by y ¼ 2 x from x ¼ 3to x ¼ 24.
                                                                   p
                                   C
                                                q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                      p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                         2   2        0 2   p 1 þ 1=x dx,we have
                                                              ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                              Since ds ¼  dx þ dy ¼  1 þð y Þ dx ¼
                                               24
                                       ð      ð                 ð                     24
                                                   ffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip  24 p ffiffiffiffiffiffiffiffiffiffiffi  4
                                                  p
                                                 2 x 1 þ 1=x dx ¼ 2               3=2    ¼ 156
                                          yds ¼                     x þ 1 dx ¼ ðx þ 1Þ
                                        C      2                 3          3       3
                     GREEN’S THEOREM IN THE PLANE
                     10.5. Prove Green’s theorem in the plane if C is a closed curve
                          which has the property that any straight line parallel to
                          the coordinate axes cuts C in at most two points.
                              Let the equations of the curves AEB and AFB (see adjoin-
                          ing Fig. 10-8) be y ¼ Y 1 ðxÞ and y ¼ Y 2 ðxÞ, respectively. If r is
                          the region bounded by C,we have
                           ðð        ð b    ð
                             @P           Y 2 ðxÞ  @P
                                                 dy dx
                             @y       x¼a  y¼Y 1 ðxÞ @y                                 Fig. 10-8
                               dx dy ¼
                           r
                                     ð b               ð b
                                                        ½Pðx; Y 2 Þ  Pðx; Y 1 ފ dx
                                              Y 2 ðxÞ
                                    ¼    Pðx; yÞj  dx ¼
                                              y¼Y 1 ðxÞ
                                      x¼a              a
                                       ð b         ð a          þ
                                                                  Pdx
                                    ¼    Pðx; Y 1 Þ dx    Pðx; Y 2 Þ dx ¼
                                        a           b            C
                          Then
                                                          þ        ðð
                                                                     @P
                                                                        dx dy
                                                      ð1Þ   Pdx ¼     @y
                                                           C
                                                                    r
                              Similarly let the equations of curves EAF and EBF be x ¼ X 1 ð yÞ and x ¼ X 2 ð yÞ respectively.  Then
                                         ðð         ð  f    ð         ð  f
                                           @Q            X 2 ð yÞ  @Q
                                                                        ½QðX 2 ; yÞ  QðX 1 ; yފ dy
                                           @x  dx dy ¼  y¼c  x¼x 1 ð yÞ @x  dx dy ¼  c
                                          r
                                                    ð  c       ð  f        þ
                                                                             Qdy
                                                  ¼   QðX 1 ; yÞ dy þ  QðX 2 ; yÞ dy ¼
                                                     f          c           C
                                                                     @Q
                                                           þ      ðð
                          Then                         ð2Þ   Qdy ¼     dx dy
                                                            C        @x
                                                                   r
                                                    þ            ðð
                                                                    @Q  @P
                              Adding (1) and (2),     Pdx þ Qdy ¼          dx dy
                                                     C              @x  @y
                                                                 r
                     10.6. Verify Green’s theorem in the plane for
                                                     þ
                                                                         2
                                                              2
                                                       ð2xy   x Þ dx þðx þ y Þ dy
                                                      C
                                                                           2     2
                          where C is the closed curve of the region bounded by y ¼ x and y ¼ x.
   244   245   246   247   248   249   250   251   252   253   254