Page 247 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 247

238       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10
















                                                           Fig. 10-6



                                                     Solved Problems


                     LINE INTEGRALS
                                  ð
                                   ð1;2Þ
                                       2
                                                  2
                     10.1. Evaluate   ðx   yÞ dx þðy þ xÞ dy along (a)a straight line from ð0; 1Þ to ð1; 2Þ,(b) straight
                                   ð0;1Þ                                                       2
                          lines from ð0; 1Þ to ð1; 1Þ and then from ð1; 1Þ to ð1; 2Þ,(c) the parabola x ¼ t, y ¼ t þ 1.
                          (a)An equation for the line joining ð0; 1Þ and ð1; 2Þ in the xy plane is y ¼ x þ 1. Then dy ¼ dx and the line
                              integral equals
                                          ð  1                          ð  1
                                              2                 2           2
                                             fx  ðx þ 1Þg dx þfðx þ 1Þ þ xg dx ¼  ð2x þ 2xÞ dx ¼ 5=3
                                          x¼0                            0
                          (b)Along the straight line from ð0; 1Þ to ð1; 1Þ, y ¼ 1; dy ¼ 0 and the line integral equals
                                              ð 1                   ð 1
                                                   2                   2
                                                 ðx   1Þ dx þð1 þ xÞð0Þ¼  ðx   1Þ dx ¼ 2=3
                                               x¼0                   0
                                 Along the straight line from ð1; 1Þ to ð1; 2Þ, x ¼ 1; dx ¼ 0 and the line integral equals
                                                2                    2
                                               ð                    ð
                                                            2           2
                                                  ð1   yÞð0Þþð y þ 1Þ dy ¼  ð y þ 1Þ dy ¼ 10=3
                                               y¼1                   1
                                 Then the required value ¼ 2=3 þ 10=3 ¼ 8:3.
                          (c)  Since t ¼ 0at ð0; 1Þ and t ¼ 1at ð1; 2Þ,the line integral equals
                                     ð 1                             ð 1
                                         2   2         2   2            5   3   2
                                        ft  ðt þ 1Þg dt þfðt þ 1Þ þ tg 2tdt ¼  ð2t þ 4t þ 2t þ 2t   1Þ dt ¼ 2
                                      t¼0                            0

                                                                         ð
                                                              2
                                   2
                     10.2. If A ¼ð3x   6yzÞi þð2y þ 3xzÞj þð1   4xyz Þk, evaluate  A   dr from ð0; 0; 0Þ to ð1; 1; 1Þ along
                          the following paths C:                         C
                                        2
                          ðaÞ x ¼ t; y ¼ t ; z ¼ t 3
                          ðbÞ The straight lines from ð0; 0; 0Þ to ð0; 0; 1Þ, then to ð0; 1; 1Þ, and then to ð1; 1; 1Þ
                          ðcÞ The straight line joining ð0; 0; 0Þ and ð1; 1; 1Þ
                                      ð       ð
                                                   2                        2
                                        A   dr ¼  fð3x   6yzÞi þð2y þ 3xzÞj þð1   4xyz Þkg ðdxi þ dyj þ dzkÞ
                                       C       C
                                              ð
                                                                              2
                                                  2
                                                ð3x   6yzÞ dx þð2y þ 3xzÞ dy þð1   4xyz Þ dz
                                             ¼
                                               C
                                             3
                                        2
                          (a)If x ¼ t; y ¼ t ; z ¼ t , points ð0; 0; 0Þ and ð1; 1; 1Þ correspond to t ¼ 0 and t ¼ 1, respectively.  Then
   242   243   244   245   246   247   248   249   250   251   252