Page 255 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 255

246       LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS        [CHAP. 10



                                                                     q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                        2   2   2
                                                                      F x þ F y þ F z
                                                        q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                              2   2
                                                 j sec 
j¼  1 þ z x þ z y ¼
                                                                          jF z j
                          according as the equation for S is z ¼ f ðx; yÞ or Fðx; y; zÞ¼ 0.
                              If the equation of S is Fðx; y; zÞ¼ 0, a normal to S at ðx; y; zÞ is rF ¼ F x i þ F y j þ F z k.  Then
                                                                       q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                          2
                                            rF   k ¼jrFjjkj cos 
  or  F z ¼  F x þ F y þ F z cos
                                                                              2
                                                                                  2
                                          q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                             2  2   2
                                           F x þ F y þ F z
                                                      as required.
                          from which j sec 
j¼
                                              jF z j
                              In case the equation is z ¼ f ðx; yÞ,wecan write Fðx; y; zÞ¼ z   f ðx; yÞ¼ 0, from which
                                                             q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                     2
                                                                  2
                                                              1 þ z x þ z y .
                          F x ¼ z x ; F y   z y ; F z ¼ 1 and we find j sec 
j¼
                                  ðð
                                                                                       2
                                                                                           2
                     10.17. Evaluate  Uðx; y; zÞ dS where S is the surface of the paraboloid z ¼ 2  ðx þ y Þ above the xy
                                   S
                                                                   2
                                                               2
                          plane and Uðx; y; zÞ is equal to (a)1, (b) x þ y ,(c)3z. Give a physical interpretation in
                          each case.  (See Fig. 10-14.)
                              The required integral is equal to
                                   ðð
                                            q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                     2
                                                 2
                                      Uðx; y; zÞ 1 þ z x þ z y dx dy  ð1Þ
                                    r
                          where r is the projection of S on the xy plane given by
                               2
                           2
                          x þ y ¼ 2; z ¼ 0.
                              Since z x ¼ 2x; z y ¼ 2y,(1)can be written
                                  ðð
                                           q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                      2
                                                 2
                                     Uðx; y; zÞ 1 þ 4x þ 4y dx dy  ð2Þ
                                   r
                          (a)If Uðx; y; zÞ¼ 1, (2)becomes
                                      ðð q
                                         ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi              Fig. 10-14
                                              2
                                                  2
                                         1 þ 4x þ 4y dx dy
                                      r
                              To evaluate this, transform to polar coordinates
                              ð ;  Þ.  Then the integral becomes
                                                                               ffiffi
                                                ffiffi                            p
                                               p
                                           ð 2   ð  2 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ð 2   1     2  13
                                                       2                  2 3=2
                                                   1 þ 4    d  d  ¼  ð1 þ 4  Þ     d  ¼  3
                                             ¼0  ¼0               ¼0 12        ¼0
                                 Physically this could represent the surface area of S,orthe mass of S assuming unit density.
                                                        ðð
                                                                q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                          2
                                                               2
                                             2
                                                           2
                                                                      2
                                                                           2
                          (b)If Uðx; y; zÞ¼ x þ y ,(2)becomes  ðx þ y Þ 1 þ 4x þ 4y dx dy or in polar coordinates
                                                        r
                                                          ffiffi
                                                         p
                                                    ð 2   ð  2  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  149
                                                                   2
                                                             3  1 þ 4  d  d  ¼
                                                      ¼0   ¼0              30
                                                                                     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                                           2
                              where the integration with respect to   is accomplished by the substitution  1 þ 4  ¼ u.
                                 Physically this could represent the moment of inertia of S about the z-axis assuming unit density,
                                                           2
                                                               2
                              or the mass of S assuming a density ¼ x þ y .
   250   251   252   253   254   255   256   257   258   259   260