Page 260 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 260

CHAP. 10]  LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS             251


                           Face BCDE:  n ¼ k; z ¼ 1.  Then
                                                                              1
                                                  1
                                       ðð         ð ð 1                      ð ð 1
                                                               2
                                          A   n dS ¼  fð2x   1Þi þ x yj   xkg  k dx dy ¼   xdxdy   1=2
                                                  0  0                        0  0
                                      BCDE
                           Face AFGO:  n ¼ k; z ¼ 0.  Then
                                                            1
                                                ðð         ð ð  1
                                                                    2
                                                              f2xi   x yjg ð kÞ dx dy ¼ 0
                                                   A   n dS ¼
                                                            0  0
                                                AFGO
                                     ðð
                              Adding,          3  1  1    1    11  :  Since
                                               2  2  3    2     6
                                        A   n dS ¼ þ þ þ 0   þ 0 ¼
                                      S
                                                             1
                                                           1
                                               ðð ð       ð ð ð 1                 11
                                                                    2
                                                  r  A dV ¼     ð2 þ x   2xzÞ dx dy dz ¼  6
                                                           0  0  0
                                                V
                           the divergence theorem is verified in this case.
                                  ðð
                     10.24. Evaluate  r   n dS, where S is a closed surface.
                                   S
                              By the divergence theorem,
                                             ðð        ðð ð
                                                          r  r dV
                                                r   n dS ¼
                                              S         V
                                                            @   @   @
                                                       ðð ð
                                                                      k  ðxi þ yj þ zkÞ dV
                                                           @x  @y   @z
                                                     ¼       i þ  j þ
                                                        V
                                                       ðð ð               ððð
                                                           @x  @y  @z
                                                                     dV ¼ 3   dV ¼ 3V
                                                     ¼       þ   þ
                                                           @x  @y  @z
                                                        V                   V
                           where V is the volume enclosed by S.
                                  ðð
                                       2        2   3              2
                     10.25. Evaluate  xz dy dz þðx y   z Þ dz dx þð2xy þ y zÞ dx dy, where S is the entire surface of the
                                   S                     p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                                2
                                                            2
                                                                    2
                                                           a   x   y and z ¼ 0  (a)by the divergence theorem
                           hemispherical region bounded by z ¼
                           (Green’s theorem in space), (b) directly.
                           (a)Since dy dz ¼ dS cos  ; dz dx ¼ dS cos  ; dx dy ¼ dS cos 
,the integral can be written
                                         ðð                                      ðð
                                             2       2    3            2
                                           fxz cos   þðx y   z Þ cos   þð2xy þ y zÞ cos 
g dS ¼  A   n dS
                                          S                                       S
                                             2
                                        2
                                                           2
                                                 3
                              where A ¼ xz i þðx y   z Þj þð2xy þ y zÞk and n ¼ cos  i þ cos  j þ cos 
k,the outward drawn unit
                              normal.
                                  Then by the divergence theorem the integral equals
                                            ðð ð
                                                 @   2  @  2    3  @       2           2  2   2
                                 ðð ð                                             ððð
                                    r  A dV ¼      ðxz Þþ  ðx y   z Þþ  ð2xy þ y zÞ dV ¼  ðx þ y þ z Þ dV
                                                 @x     @y         @z
                                  V           V                                    V
                              where V is the region bounded by the hemisphere and the xy plane.
                                  By use of spherical coordinates, as in Problem 9.19, Chapter 9, this integral is equal to
                                                   ð  =2  ð  =2  ð          2 a 5
                                                              2
                                                                2
                                                  4          r   r sin   dr d  d  ¼
                                                     ¼0   ¼0 r¼0              5
   255   256   257   258   259   260   261   262   263   264   265