Page 262 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 262

CHAP. 10]  LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS             253























                                                           Fig. 10-20


                                                           @A 1    @A 1
                                                                      n   k dS
                                            ½r   ðA 1 iފ   n dS ¼  n   j                             ð1Þ
                                                            @z     @y
                           If z ¼ f ðx; yÞ is taken as the equation of S,then the position vector to any point of S is r ¼ xi þ yj þ zk ¼
                                             @r    @z     @ f     @r
                           xi þ yj þ f ðx; yÞk so that  @y  ¼ j þ  @y  k ¼ j þ  @y  k. But  @y  is a vector tangent to S and thus perpendicular to
                           n,sothat
                                                @r       @z                    @z
                                                           n   k ¼ 0  or         n   k
                                                @y       @y                    @y
                                              n    ¼ n   j þ             n   j ¼
                           Substitute in (1)to obtain

                                              @A 1   @A 1          @A 1 @z   @A 1
                                                                                n   k dS
                                              @z  n   j    @y  n   k dS ¼   @z @y  n   k    @y
                           or

                                                                 @A 1  @A 1 @z
                                                                            n   k dS
                                                                  @y   @z @y
                                                 ½r   ðA 1 iފ   n dS ¼   þ                           ð2Þ
                                                                        @A 1  @A 1 @z  @F
                              Now on S, A 1 ðx; y; zÞ¼ A 1 ½x; y; f ðx; yފ ¼ Fðx; yÞ;hence,  þ  ¼  and (2)becomes
                                                                        @y   @z @y  @y
                                                                @F         @F
                                                                              dx dy
                                                                @y         @y
                                                 ½r   ðA 1 iފ   n dS ¼   n   k dS ¼
                           Then
                                                                        @F
                                                    ðð              ðð
                                                                          dx dy
                                                                        @y
                                                      ½r   ðA 1 iފ   n dS ¼
                                                     S               r
                           where r is the projection of S on the xy plane. By Green’s theorem for the plane, the last integral equals
                           þ
                             Fdx where   is the boundary of r.Since at each point ðx; yÞ of   the value of F is the same as the value

                           of A 1 at each point ðx; y; zÞ of C, and since dx is the same for both curves, we must have
                                                          þ       þ
                                                                    A 1 dx
                                                            Fdx ¼
                                                                   C
   257   258   259   260   261   262   263   264   265   266   267