Page 270 - Schaum's Outline of Theory and Problems of Advanced Calculus
P. 270

CHAP. 10]  LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS             261


                     SURFACE INTEGRALS
                                    ðð
                                        2
                                                                         2
                                           2
                                                                                 2
                                                                              2
                     10.52. (a) Evaluate  ðx þ y Þ dS, where S is the surface of the cone z ¼ 3ðx þ y Þ bounded by z ¼ 0 and z ¼ 3.
                                     S
                           (b)Interpret physically the result in (a).  Ans:  ðaÞ 9
                     10.53. Determine the surface area of the plane 2x þ y þ 2z ¼ 16 cut off by  (a) x ¼ 0; y ¼ 0; x ¼ 2; y ¼ 3,
                                               2
                                           2
                           (b) x ¼ 0; y ¼ 0, and x þ y ¼ 64.  Ans:  ðaÞ 9;  ðbÞ 24
                                                            2   2                      p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2
                                                                                         2
                     10.54. Find the surface area of the paraboloid 2z ¼ x þ y which is outside the cone z ¼  x þ y .
                                    ffiffiffi
                           Ans:  2
                                   p
                                3   ð5 5   1Þ
                                                                  2
                                                              2
                                                                                          2
                                                         2
                                                                                              2
                     10.55. Find the area of the surface of the cone z ¼ 3ðx þ y Þ cut out by the paraboloid z ¼ x þ y .
                           Ans:  6
                                                                                 2
                                                                                        2
                                                                                                 2
                                                                                             2
                                                                                    2
                                                                                                    2
                     10.56. Find the surface area of the region common to the intersecting cylinders x þ y ¼ a and x þ z ¼ a .
                           Ans:  16a 2
                                                          2   2  2   2                          p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2
                                                                                                   2
                     10.57. (a) Obtain the surface area of the sphere x þ y þ z ¼ a contained within the cone z tan   ¼  x þ y ,
                           0 < < =2. (b)Use the result in (a)to find the surface area of a hemisphere. (c) Explain why formally
                           placing   ¼   in the result of (a)yields the total surface area of a sphere.
                                                     2
                                     2
                           Ans:  ðaÞ 2 a ð1   cos  Þ;  ðbÞ 2 a (consider the limit as   !  =2Þ
                     10.58. Determine the moment of inertia of the surface of a sphere of radius a about a point on the surface. Assume
                                                                      2
                                                     2
                           aconstant density  .  Ans:  2Ma , where mass M ¼ 4 a
                                                                      2
                                                                             2
                                                                          2
                     10.59. (a)Find the centroid of the surface of the sphere x þ y þ z ¼ a 2  contained within the cone
                                 p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                                       2
                                    2
                                   x þ y ,0 < < =2.  (b)From the result in (a) obtain the centroid of the surface of a hemi-
                           z tan   ¼
                           sphere.  Ans:   1 að1 þ cos  Þ;  ðbÞ a=2
                                           2
                                        ðaÞ
                     THE DIVERGENCE THEOREM
                                                                  2
                     10.60. Verify the divergence theorem for A ¼ð2xy þ zÞi þ y j  ðx þ 3yÞk taken over the region bounded by
                           2x þ 2y þ z ¼ 6; x ¼ 0; y ¼ 0; z ¼ 0.  Ans:  common value ¼ 27
                                  ðð
                                                    2
                     10.61. Evaluate  F   n dS, where F ¼ðz   xÞi   xyj þ 3zk and S is the surface of the region bounded by
                                   S
                                 2
                           z ¼ 4   y ; x ¼ 0; x ¼ 3 and the xy plane.  Ans. 16
                                 ðð
                                                                     2
                     10.62. Evaluate  A   n dS, where A ¼ð2x þ 3zÞi  ðxz þ yÞj þð y þ 2zÞk and S is the surface of the sphere having
                                  S
                           center at ð3;  1; 2Þ and radius 3.  Ans:  108
                                            ðð
                     10.63. Determine the value of  xdy dz þ ydz dx þ zdxdy, where S is the surface of the region bounded by the
                                             S
                                  2
                                     2
                           cylinder x þ y ¼ 9 and the planes z ¼ 0 and z ¼ 3,  (a)by using the divergence theorem,  (b)directly.
                           Ans:  81
                                  ðð
                                             2
                     10.64. Evaluate  4xz dy dz   y dz dx þ yz dx dy, where S is the surface of the cube bounded by x ¼ 0, y ¼ 0,
                                  S
                           z ¼ 0, x ¼ 1; y ¼ 1; z ¼ 1,  (a)directly,  (b)ByGreen’s theorem in space (divergence theorem).
                           Ans.  3/2
                                   ðð
                     10.65. Prove that  ðr   AÞ  n dS ¼ 0for any closed surface S.
                                   S
   265   266   267   268   269   270   271   272   273   274   275