Page 374 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 374

CHAP.  61  FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS                     361




                  Find the Fourier transform of  the sequence x[n] shown in Fig. 6-41
                  Am.  X(R) = j2(sin R + 2 sin 2R + 3 sin 3R)
















                                                   Fig. 6-41




                  Find the inverse Fourier transform of each of  the following Fourier transforms:
                  (a)  X(R) = cos(2R)
                  (6)  X(R) = jR

                  Am.  (a)  x[nl= f8[n - 21 + 3[n + 21




                  Consider the sequence y[n] given by
                                                                 n even
                                                                 n odd
                  Express  y(R) in terms of  X(R).

                 Ans.  Y(R) = $X(R) + $x(R  - 7)

                 Let




                 (a)  Find  y[n 1 = x[n] * x[n].
                 (b)  Find  the Fourier transform  Y(0) of  y[n].

                                                     In15 5
                 Am.  (a)  y[n] =
                                                     In1 > 5



                 Verify  Parseval's  theorem [Eq. (6.66)] for the discrete-time Fourier transform, that is,
                                             m            1




                 Hint:  Proceed in a manner similar to that for solving Prob. 5.38.
   369   370   371   372   373   374   375   376   377   378   379