Page 373 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 373

FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS  [CHAP. 6



                                       Supplementary Problems


           6.62.  Find the discrete Fourier series for each of  the following periodic sequences:
                 (a)  x[n]  = cos(0,l~n)
                 (b)  x[n] = sin(0.l.rrn)
                 (c)  x[n] = 2cos(1.6~n) + sin(2.47rn)
                                                     ~0.1~
                 Am.  (a)  x[n] = $ejnon  + 1 ze ~  ~ R0 =   ~  0   ~    ,






           6.63.  Find the discrete Fourier series for the sequence x[n] shown  in  Fig. 6-40.
























                                                   Fig. 6-40




           6.64.  Find  the  trigonometric form  of  the  discrete  Fourier  series for  the  periodic  sequence  x[n]
                 shown  in  Fig. 6-7 in  Prob. 6.3.
                             3      Tr      Tr    1
                 Am.  x[n] = -  - cos-n  - sin-n  - -cos  rn
                             2      2        2    2
           6.65.  Find the Fourier transform of  each of  the following sequences:
                 (a)  x[nl= al"l, la1 < 1
                 (6)  x[n] = sin(flon), IRoI < 7r
                 (c)  x[nl= u[ -n  - 11
                                        1 -a2
                 Am.  (a)  X(fl)=
                                   1 -2acosfl+a2
   368   369   370   371   372   373   374   375   376   377   378