Page 458 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 458

Appendix B











                 Properties of Linear Time-Invariant Systems
                                   and Various Transforms




             B.l  CONTINUOUS-TIME LTI  SYSTEMS
                  Unit impulse  response: h(t)
                                                   w
                  Convolution:  y(t) =x(t)* h(t) =
                  Causality:  h( t ) = 0, t < 0
                             w
                  Stability: /  Ih(t)l dt < m
                            - ?D

            B.2  THE LAPLACE TRANSFORM
            The Bilateral  (or Two-sided) Laplace Transform

            Definition:












            Properties of  the Bilateral Laplace  Transform:
                  Linearity: a,x,(t) + a,x,(t)  -a,X,(s)  + a,X,(s),  R'3R, nR,
                  Time shifting: x( t - t,)  H e-"oX(s),  R' = R
                  Shifting in  s: e"llx(t) - X(s - so), R' = R + Re(s,)
                                          1
                  Time scaling: x(at) H -X(S),   R' = aR
                                         la l
                  Time reversal:  x( - t) - X( -s),  R' = -R
                                      Wt)
                  Differentiation  in  t:  - -sX(s),  R' 3R
                                        dt
                                                fl(s)
                  Differentiation  in  s:  - tx(t - - , R'=R
                                                  ds
                               I             1
                  Integration:   x(r)  dr - -X(s),  R' >R n {Re(s) > 0)
                              1- w          S
                  Convolution: x,( t) * x,( t) t, X,(s)X,(s),  R' 3 R, n R,
   453   454   455   456   457   458   459   460   461   462   463