Page 460 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 460

APP.  B]  PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS TRANSFORMS                     447



                Integration in the Time Domain:










                  Initial value theorem: ~(0') = lirn sX,(s)
                                               S-m
                  Final value theorem:  lim x(t) = lim sX,(s)
                                       t-oc      s-0


            B.3  THE FOURIER TRANSFORM
            DeJinition:












            Properties of  the Fourier Transform:
                 Linearity: alxl(t) + a2x2(t) c*alX,(o) + a2X2(o)
                 Time shifting: x(t - to) c* e-~"'o~(w)
                 Time scaling: x(at) -
                 Frequency shifting: eJw~~'x(t) c*X(o - oo)



                 Time reversal: x( - t ) c* X( - o)
                 Duality:  X(t) c* 2lrx( -o)
                                      Wt)
                 Time differentiation:  - c*jwX(w)
                                        dt
                                                        dX(4
                 Frequency differentiation: ( -jt  )x(t) c* -
                                                          do




                 Convolution:  x,(t)* x2(t) -X,(w)X2(w)
                                               1
                 Multiplication:  x,(t )x2(t) - -X,(o)  * X2( W)
                                              2lr
                 Real signal: x(t) =xe(t) +xo(t) -X(o)  =A(o) + jB(o)
                                                     X( -0) = X*(o)
                 Even component:  xe(t) - Re{X(o)) = A(w)
                 Odd component: xo(t) c* j Im(X(o)) = jB(o)
   455   456   457   458   459   460   461   462   463   464   465