Page 462 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 462

APP.  B]  PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS TRANSFORMS                     449



             B.4  DISCRETE-TIME LTI  SYSTEMS
                  Unit sample response:  h[n]
                                                    m
                  Convolution: y[n] = x[n] * h[n] =     x[k]h[n - k]
                                                  k=  -m
                  Causality:  h[n] = 0,  n < 0
                              m
                  Stability:     (h[n](dt < a:
                           n=  -m



             B.5  THE Z-TRANSFORM
            The Bilateral  (or Two-sided) z-Transform:

            Dejnition:














            Properties of the z- Transform:
                  Linearity:  alxl[n] + a2x2[n] t-,a,X1(z) +a2X2(z), R'  3 R, n R2

                  Time shifting: x[n - no] -2-"oX(z),  R'  3 R n (0 < lzl  < w)
                                                    Z
                                                   -
                  Multiplication by  z::  z:x[n] - x(% 1, R' = lzdR
                                                                  R'
                  Multiplication by ejR1tN: e~~o"~[n] ~(e-jnl)z),  = R
                                                       1
                  Time reversal:  x[ - n] t-, X

                                                   dX( z )
                  Multiplication by  n: nx[n] o - z -,     R'  = R
                                   n   x[n] -    1   dz
                  Accumulation:                       X(z), R'  3 R n {lzl > 1)
                                               1 -2-'
                                 k= - OC


            Some Common z-Transforms Pairs:
                  6[n] - all  z
                          1,
   457   458   459   460   461   462   463   464   465   466   467