Page 464 - Schaum's Outline of Theory and Problems of Signals and Systems
P. 464

APP.  B]  PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS TRANSFORMS                     45 1



             B.6  THE DISCRETE-TIME FOURIER TRANSFORM
             Definition:





                                                        m
                                              X(R) =  C  x [n] eeJf'"
                                                      n= -0c






             Properties of the Discrete-Time Fourier  Transform:
                  Periodicity: x[n] - X(R) = X(R + 2rr)
                  Linearity: a,x,[n]  + a2x2[n] ++ a, XJR) + a2X2(R)
                  Time shifting: x[n  - no] ++ e-~~"llX(R)
                  Frequency shifting: e~"~"x[n]  - X(R - R,)
                  Conjugation: x*[n] - X*( -R)
                  Time Reversal: x[ - n] - X( - R)
                                                        ifn=km
                  Time Scaling: x(,,,[n]  =                       -X(mR)
                                                        ifnzkm
                                                      dX(R)
                  Frequency differentiation: m[n] - j------
                                                        dR
                  First  difference: x[n]  - x[n - 11 ++ (1 - e-jo)x(fl)
                                   n                            1
                  Accumulation:  C  x[k ] - rrX(0) S(R) +       A  x(n)
                                                             1 - e -jn
                                 k=  -CC
                  Convolution: x,[n] * x2[n] ++ X,(R)X,(R)

                                                1
                  Multiplication: x,[n]x2[n] - -X,(R)    @ X2(R)
                                               2rr
                  Real  sequence: x[n] =x,[n] + x,[n] ++ X(R) = A(R) + jB(R)
                                                          X(-R) =X*(R)
                    Even component: x,[n] - Re{X(R)) =A(R)
                    Odd component: x,[n] - j  1m{X(R)) = jB(R)

             Parseval's Relations:
   459   460   461   462   463   464   465   466   467   468   469