Page 141 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 141

FUNCTIONS  OF RANDOM  VARIABLES,  EXPECTATION,  LIMIT  THEOREMS  [CHAP.  4


























         4.9.   Let Y = ex. Find the pdf of Y if X is a uniform r.v. over (0, 1).
                   The pdf of X is
                                                     1   O<x<l
                                                    0    otherwise
               The cdf of  Y is






                                             d       d      1
               Thus,                   fu(y)=-FAY)=-lny=-       1 < y<e
                                            dy      dy      Y
         Alternative Solution :
                   The  function  y = g(x) = ex  is  a  continuous  monotonically  increasing  function.  Its  inverse  is
               x = g-'Q  = h(y) = In y. Thus, by Eq. (4.6), we obtain
                                                               t







                                                    (0   otherwise

         4.10.  Let  Y = ex. Find the pdf of Y if X = N(p ; a2).
                   The pdf of X is [Eq. (2.52)]




               Thus, using the technique shown in the alternative solution of Prob. 4.9, we obtain




               Note that X = In Y is the normal r.v.; hence, the r.v. Y is called the log-normal r.v.
   136   137   138   139   140   141   142   143   144   145   146