Page 238 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 238

CHAP.  61        ANALYSIS  AND PROCESSING  OF RANDOM  PROCESSES




               (b)  Find the power spectral density S,(Q  of Y(n).
               (a)  The mean of Y(n) is
                                     E[Y(n)] = E[X(n)] + E[W(n)] = E(A) + E[W(n)] = 0
                   The autocorrelation function of Y(n) is
                    Ry(n, n + k) = E{[X(n) + W(n)][X(n + k) + W(n + k)])
                             = E[X(n)x(n + k)] + ECX(n)]E[W(n + k)] + E[W(n)]E[X(n + k)] + E[W(n) W(n + k)]
                             = E(A2) + Rw(k) = a,'  + a26(k) = Ry(k)                      (6.1 46)
                   Thus Y(n) is WSS.
               (b)  Taking the Fourier transform of Eq. (6.146), we obtain






         RESPONSE  OF  LINEAR  SYSTEMS  TO  RANDOM  INPUTS
         6.24.  Derive Eq. (6.58).
                   Using Eq. (6.56), we have














         6.25.  Derive Eq. (6.63).
                   From Eq. (6.62), we have




               Taking the Fourier transform of RAT), we obtain



               Letting r + a - #?  = 1, we get












         6.26.  A WSS random process X(t) with autocorrelation function
   233   234   235   236   237   238   239   240   241   242   243