Page 251 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 251

ANALYSIS  AND  PROCESSING  OF  RANDOM  PROCESSES             [CHAP  6



               Ans.  (a)  R,,(t,  t + z) = - a2 sin ooz
                   (b)  Sx,(w) - ja2n[6(o .-  uO) - 6(0 + coo)]
         6.57.   Verify Eqs. (6.36) and (6.37).
               Hint:  Substitute Eq. (6.18) into Eq. (6.34).

         6.58.   Let  Y(t) = X(t) + W(t), where X(t) and  W(t) are orthogonal and W(t) is a white noise specified by Eq. (6.43)
               or (6.45). Find the autocorrelation function of  Y(t).

               Ans.  Rdt, s) = Rx(t, s) + 026(t - S)
         6.59.   A zero-mean WSS random process X(t) is called band-limited white noise if its spectral density is given by




               Find the autocorrelation function of X(t).
                          No  o, sin o, z
               Ans.  RX(z) = - -
                           27~   oBz
         6.60.   A WSS random process X(t) is applied to the input of an LTI system with impulse response h(t) = 3e-2'u(t).
               Find the mean value of  Y(t) of the system if  E[X(t)] = 2.
               Hint:  Use Eq. (6.59).
               Ans.  3

         6.61.   The input  X(t) to the RC  filter shown in  Fig. 6-7 is  a white noise specified by  Eq. (6.45). Find the rnean-
               square value of  Y(t).
               Hint:  Use Eqs. (6.64) and (6.65).
               Ans.  02/(2RC)













                                               Fig. 6-7  RC filter.

         6.62.   The input X(t) to a differentiator is the random telegraph signal of  Prob. 6.18.
               (a)  Determine the power spectral density of the differentiator output.
               (b)  Find the mean-square value of the differentiator output.
                               41m2
               Ans.  (a)  Sy(w) = -
                             o2 + 4A2
                   (b)  E[Y2(t)J  = co
         6.63.   Suppose that the input to the filter shown in Fig. 6-8 is a white noise specified by Eq. (6.45). Find the power
               spectral density of  Y(t).
               Ans.  Sy(o) = a2(1 + a2 + 2a cos oT)
   246   247   248   249   250   251   252   253   254   255   256