Page 57 - Schaum's Outlines - Probability, Random Variables And Random Processes
P. 57

RANDOM  VARIABLES                           [CHAP  2





























                                                    Fig. 2-10


          2.6.   Verify (a) Eq. (2.1 0); (b) Eq. (2.1 1); (c) Eq. (2.1 2).
                (a)  Since (X _<  b) = (X I a) u (a < X  _<  b) and (X I a) n (a < X  5 h) = @, we have
                                                                    b)
                                          P(X I h) = P(X  5 a) + P(u < X  I
                    or                       F,y(b) = FX(a) + P(u < X  I  h)
                    Thus,                    P(u < X  5 b) = Fx(h) - FX(u)
                                                   n
                (b)  Since (X 5 a) u (X > a) = S and (X I (X > a) = a, we have
                                                 a)
                                            P(X S a) + P(X > a) = P(S) = 1
                    Thus,                 P(X  > a) = 1  - P(X  5 a) = 1  - Fx(u)

                (c)  Now             P(X < h) = P[lim X  5 h - E]  = lim P(X  I b - E)
                                                c-0           c+O
                                                c>O           E>O
                                             = lim Fx(h - E)  = Fx(b - )
                                              8-0
                                              8: > 0

          2.7.   Show that
                (a)  P(a i X  i b) = P(X  = a) + Fx(b) - Fx(a)
                (b)  P(a < X  < b) = Fx(b) - F,(a)  - P(X = h)
                (c)  P(a i X  < b) = P(X = u) + Fx(b) - Fx(a) - P(X = b)
                (a)  Using Eqs. (1.23) and (2.10), we have
                                        P(a I X  I h) = P[(X = u) u (a < X  I b)]
                                                  = P(X  = u) + P(a < X  5 b)
                                                  = P(X  = a) + F,y(h) - FX(a)
                (b)  We have
                                        P(a < X  5 b) = P[(u < X  c h) u (X = b)]
                                                  = P(u < X  < h) + P(X = b)
   52   53   54   55   56   57   58   59   60   61   62