Page 59 - Probability, Random Variables and Random Processes
P. 59

CHAP.  21                        RANDOM  VARIABLES



                 Again using Eq. (2.10), we obtain
                                        P(a < X < b) = P(a < X  I b) - P(X = b)
                                                  = Fx(b) - Fx(a) - P(X = b)
                 Similarly,           P(a I X I b) = P[(a  I X < b) u (X = b)]
                                                = P(a I X  < b) + P(X = b)
                 Using Eq. (2.64), we obtain
                                   P(a I X < b) = P(a 5 X 5 b) - P(X = b)
                                              = P(X = a) + Fx(b) - F,(a)  - P(X = b)

                 X be the r.v. defined in Prob. 2.3.
                  Sketch the cdf FX(x) of X and specify the type of X.
                  Find (i)  P(X I I), (ii) P(l < X I 2), (iii) P(X > I), and (iv) P(l I X I 2).
                 From the result of Prob. 2.3 and Eq. (2.18), we have







                 which is sketched in Fig. 2-1 1. The r.v. X is a discrete r.v.
                  (i)  We see that
                                                 P(X 5 1) = Fx(l) = 4
                  (ii)  By Eq. (2.1 O),

                                         P(l < X 5 2) = Fx(2) - FA1) =   - 4 =
                 (iii)  By Eq. (2.1 I),
                                             P(X > 1) = 1 - Fx(l) = 1 - $ = $

                 (iv)  By Eq. (2.64),
                                   P(l I X I 2) = P(X = 1) + Fx(2) - Fx(l) = 3 + 3 - 3 = 3













                                                 Fig. 2-1 1

              Sketch the cdf F,(x)  of the r.v. X defined in Prob. 2.4 and specify the type of X.
                 From the result of Prob. 2.4, we have
                                                       0    x<o
                                       FX(x)=P(XIx)=
                                                       1     llx
              which is sketched in Fig. 2-12. The r.v. X is a continuous r.v.
   54   55   56   57   58   59   60   61   62   63   64