Page 183 - Semiconductor For Micro- and Nanotechnology An Introduction For Engineers
P. 183

Statistics
                             5.2.2 Bose-Einstein Statistics
                                                                        α
                             If the total particle number   is tuned by a parameter  , then we have to
                                                   N
                             use the grand partition function to derive the average number of particles
                             per energy-level. For the case of Bose-Einstein (BE) statistics, arbitrary
                             numbers n   are allowed. This yields for (5.22)
                                     k
                                           ∞
                                                                       1
                                  Q =  ∏  ∑  exp  ( – (  βE +  α)n ) =  ∏ -------------------------------  (5.25)
                                                     i
                                                           i
                                                                          βE i )
                                                                        α +
                                                                       ( –
                                                                    –
                                        i                       i  1 e
                                           n i
                             Thus the logarithm of (5.25) is
                                                       (
                                           lnQ =  – ∑ ln 1 e  ( –  α +  βE i ) )  (5.26)
                                                          –
                                                    i
                             and inserting this into (5.20), we obtain
                                                         (
                                                           –
                                          lnZ =  αN – ∑ ln 1 e  ( –  α + βE i ) )  (5.27)
                                                      i
                             The partition function already includes the constraint of the total number
                             of particles and thus may be used to calculate the average number of par-
                             ticles n i   for a specific energy level E i

                                                                   ∂
                                     ∂
                                    1  lnZ    1   βe  ( –  α +  βE i )  ∂  lnZ α  1
                              n =  – ---------------- =  – --- –  ------------------------------- +  --------------------- =  ----------------------  (5.28)
                               i    β ∂ E    β        ( –  α + βE i )  ∂ α ∂ E  α +  βE i
                                                   –
                                        i        1 e                 i   e     – 1
                                                                      α
                             The derivative   lnZ ∂⁄∂  α   comes from the fact that   may depend on the
                             position of the energy levels. The fact that, for a given  , the parameter
                                                                         N
                             α    maximizes the grand partition function, results in   lnZ ∂⁄∂  α =  . 0
                             Equation (5.28) is called the Bose-Einstein distribution.
                Chemical     The important relation
                Potential
                                                    ∂  lnZ   µ
                                                α =  ------------- =  – ------    (5.29)
                                                     ∂ N     kT





                180          Semiconductors for Micro and Nanosystem Technology
   178   179   180   181   182   183   184   185   186   187   188