Page 254 - Semiconductor For Micro- and Nanotechnology An Introduction For Engineers
P. 254

Electron-Phonon
                                                                                  (7.45)
                                                       –
                                                  δE =
                                                        ε EP
                                                         ∞
                             where  ε ∞   is the optical or high frequency dielectric constant. For the
                             induced electric field we have to take into account that the respective
                             electrostatic potential is due to screening effects because of the movable
                             charges present and thus will be of the form as given in (7.20) or (7.21)
                             and therefore (7.45) reads
                                                     ⁄
                                     NMω  2 opt 1  1    12  q  2  iqr  + – iqr  i – ωt
                                            
                              δE =   --------------------- ----- –  ----  ----------------- b e[  +  b e  ]e e  (7.46)
                                      4πV   ε ∞  ε   q +  λ 2  q   q      q
                                                        2
                                                  0
                             7.3.3 Piezoelectricity

                Simple       Consider the 1D lattice with a basis of Section 2.4.1 (also see
                Piezoelectric   Figure 2.20), but now endow the two atoms each with equal but opposing
                Model
                             charges. The kinetic co-energy is added up from the contributions of the
                             individual ions

                                                        ,
                                                       n 2
                                                      1      2
                                                T ∗ =  --- ∑ m u˙                 (7.47)
                                                           α iα
                                                      2
                                                       iα
                             The index  α   counts over the ions in an elementary basis cell, and the
                             index   counts over the lattice cells. Similarly, the harmonic bond poten-
                                  i
                             tial energy is dependent on the stretching of the inter-ion bonds
                                                  ,,,
                                                 n 2 n 2
                                                1     E αiβj       2
                                           U =  ---  ∑  ------------ u –(  iα  u )  (7.48)
                                                                 jβ
                                                4       a
                                                   ,
                                                  iαβj
                             to which we now add the ionic energy due to the nearest-neighbor charge
                             interaction
                                                        1 q α
                                                 U =   ----------------           (7.49)
                                                   q
                                                       4πε r
                                                          0 α




                             Semiconductors for Micro and Nanosystem Technology    251
   249   250   251   252   253   254   255   256   257   258   259